![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
The First International Congress of the International Society for Analysis, its Applications and Computations (ISAAC'97) was held at the University of Delaware from 3 to 7 June 1997. As specified in the invitation of the President Professor Robert P. Gilbert of the ISAAC, we organized the session on Reproducing Kerneis and Their Applications. In our session, we presented 24 engaging talks on topics of current interest to the research community. As suggested and organized by Professor Gilbert, we hereby publish its Proceedings. Rather than restricting the papers to Congress participants, we asked the Ieading mathematicians in the field of the theory of reproducing kern eIs to submit papers. However, due to time restrietions and a compulsion to limit the Proceedings a reasonable size, we were unable to obtain a comprehensive treatment of the theory of reproducing kernels. Nevertheless, we hope this Proceedings of the First International Conference on reproducing kerneis will become a significant reference volume. Indeed, we believe that the theory of reproducing kernels will stand out as a fundamental and beautiful contribution in mathematical sciences with a broad array of applications to other areas of mathematics and science. We would like to thank Professor Robert Gilbert for his substantial contri bu tions to the Congress and to our Proceedings. We also express our sincere thanks to the staff of the University of Delaware for their manifold cooperation in organizing the Congress."
This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincare Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant +/-1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
On the one hand, this monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution because the authors only assume the reader is familiar with the basics of complex analysis. On the other hand, the monograph also serves as a valuable reference for the research specialist because the authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its "number-theoretic digressions". These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.
This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.
The chapters of this volume are based on talks given at the eleventh international Sampling Theory and Applications conference held in 2015 at American University in Washington, D.C. The papers highlight state-of-the-art advances and trends in sampling theory and related areas of application, such as signal and image processing. Chapters have been written by prominent mathematicians, applied scientists, and engineers with an expertise in sampling theory. Claude Shannon's 100th birthday is also celebrated, including an introductory essay that highlights Shannon's profound influence on the field. The topics covered include both theory and applications, such as: * Compressed sensing* Non-uniform and wave sampling* A-to-D conversion* Finite rate of innovation* Time-frequency analysis* Operator theory* Mobile sampling issues Sampling: Theory and Applications is ideal for mathematicians, engineers, and applied scientists working in sampling theory or related areas.
This fairly self-contained work embraces a broad range of topics in analysis at the graduate level, requiring only a sound knowledge of calculus and the functions of one variable. A key feature of this lively yet rigorous and systematic exposition is the historical accounts of ideas and methods pertaining to the relevant topics. Most interesting and useful are the connections developed between analysis and other mathematical disciplines, in this case, numerical analysis and probability theory. The text is divided into two parts: The first examines the systems of real and complex numbers and deals with the notion of sequences in this context. After the presentation of natural numbers as a subset of the reals, elements of combinatorics and a discussion of the mathematical notion of the infinite are introduced. The second part is dedicated to discrete processes starting with a study of the processes of infinite summation both in the case of numerical series and of power series.
This volume is devoted to some topical problems and various applications of operator theory and its interplay with modern complex analysis. 30 carefully selected surveys and research papers are united by the "operator theoretic ideology" and systematic use of modern function theoretical techniques.
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hoermander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersen-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.
The book faces the interplay among dynamical properties of semigroups, analytical properties of infinitesimal generators and geometrical properties of Koenigs functions. The book includes precise descriptions of the behavior of trajectories, backward orbits, petals and boundary behavior in general, aiming to give a rather complete picture of all interesting phenomena that occur. In order to fulfill this task, we choose to introduce a new point of view, which is mainly based on the intrinsic dynamical aspects of semigroups in relation with the hyperbolic distance and a deep use of Caratheodory prime ends topology and Gromov hyperbolicity theory. This work is intended both as a reference source for researchers interested in the subject, and as an introductory book for beginners with a (undergraduate) background in real and complex analysis. For this purpose, the book is self-contained and all non-standard (and, mostly, all standard) results are proved in details.
This book presents collaborative research presented by experts in the field of nonlinear science provides the reader with contemporary, cutting-edge, research works that bridge the gap between theory and device realizations of nonlinear phenomena. The conference provides a unique forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: chaos gates, social networks, communication, sensors, lasers, molecular motors, biomedical anomalies, and stochastic resonance. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2018) held in Maui, Hawaii, 2018. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
The theory of Riemann surfaces occupies a very special place in
mathematics. It is a culmination of much of traditional calculus,
making surprising connections with geometry and arithmetic. It is
an extremely useful part of mathematics, knowledge of which is
needed by specialists in many other fields. It provides a model for
a large number of more recent developments in areas including
manifold topology, global analysis, algebraic geometry, Riemannian
geometry, and diverse topics in mathematical physics.
The book describes developments on some well-known problems regarding the relationship between orders of finite groups and that of their automorphism groups. It is broadly divided into three parts: the first part offers an exposition of the fundamental exact sequence of Wells that relates automorphisms, derivations and cohomology of groups, along with some interesting applications of the sequence. The second part offers an account of important developments on a conjecture that a finite group has at least a prescribed number of automorphisms if the order of the group is sufficiently large. A non-abelian group of prime-power order is said to have divisibility property if its order divides that of its automorphism group. The final part of the book discusses the literature on divisibility property of groups culminating in the existence of groups without this property. Unifying various ideas developed over the years, this largely self-contained book includes results that are either proved or with complete references provided. It is aimed at researchers working in group theory, in particular, graduate students in algebra.
This manuscript provides an introduction to the generation theory of nonlinear one-parameter semigroups on a domain of the complex plane in the spirit of the Wolff-Denjoy and Hille-Yoshida theories. Special attention is given to evolution equations reproduced by holomorphic vector fields on the unit disk. A dynamic approach to the study of geometrical properties of univalent functions is emphasized. The book comprises six chapters. The preliminary chapter and chapter 1 give expositions to the theory of functions in the complex plane, and the iteration theory of holomorphic mappings according to Wolff and Denjoy, as well as to Julia and Caratheodory. Chapter 2 deals with elementary hyperbolic geometry on the unit disk, and fixed points of those mappings which are nonexpansive with respect to the PoincarA(c) metric. Chapters 3 and 4 study local and global characteristics of holomorphic and hyperbolically monotone vector-fields, which yield a global description of asymptotic behavior of generated flows. Various boundary and interior flow invariance conditions for such vector-fields and their parametric representations are presented. Applications to univalent starlike and spirallike functions on the unit disk are given in Chapter 5. The approach described may also be useful for higher dimensions. Audience: The book will be of interest to graduate students and research specialists working in the fields of geometrical function theory, iteration theory, fixed point theory, semigroup theory, theory of composition operators and complex dynamical systems.
Current research and applications in nonlinear analysis influenced by Haim Brezis and Louis Nirenberg are presented in this book by leading mathematicians. Each contribution aims to broaden reader's understanding of theories, methods, and techniques utilized to solve significant problems. Topics include: Sobolev Spaces Maximal monotone operators A theorem of Brezis-Nirenberg Operator-norm convergence of the Trotter product formula Elliptic operators with infinitely many variables Pseudo-and quasiconvexities for nonsmooth function Anisotropic surface measures Eulerian and Lagrangian variables Multiple periodic solutions of Lagrangian systems Porous medium equation Nondiscrete Lassonde-Revalski principle Graduate students and researchers in mathematics, physics, engineering, and economics will find this book a useful reference for new techniques and research areas. Haim Brezis and Louis Nirenberg's fundamental research in nonlinear functional analysis and nonlinear partial differential equations along with their years of teaching and training students have had a notable impact in the field.
This is a brief textbook on complex analysis intended for the students of upper undergraduate or beginning graduate level. The author stresses the aspects of complex analysis that are most important for the student planning to study algebraic geometry and related topics. The exposition is rigorous but elementary: abstract notions are introduced only if they are really indispensable. This approach provides a motivation for the reader to digest more abstract definitions (e.g., those of sheaves or line bundles, which are not mentioned in the book) when he/she is ready for that level of abstraction indeed. In the chapter on Riemann surfaces, several key results on compact Riemann surfaces are stated and proved in the first nontrivial case, i.e. that of elliptic curves.
This volume highlights the main results of the research performed within the network "Harmonic and Complex Analysis and its Applications" (HCAA), which was a five-year (2007-2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.
Originally developed in 1966, Hilbert spaces have undergone intense investigation in the past few years. This book concerns a family of Hilbert spaces of holomorphic functions in the unit disk. Besides possessing a fascinating internal structure, they play a role in several basic problems in function theory. This book develops the basic structure of de Branges-Rovnyak spaces and some of these spaces' function-theoretic connections.
This book is written to be a convenient reference for the working scientist, student, or engineer who needs to know and use basic concepts in complex analysis. It is not a book of mathematical theory. It is instead a book of mathematical practice. All the basic ideas of complex analysis, as well as many typical applica tions, are treated. Since we are not developing theory and proofs, we have not been obliged to conform to a strict logical ordering of topics. Instead, topics have been organized for ease of reference, so that cognate topics appear in one place. Required background for reading the text is minimal: a good ground ing in (real variable) calculus will suffice. However, the reader who gets maximum utility from the book will be that reader who has had a course in complex analysis at some time in his life. This book is a handy com pendium of all basic facts about complex variable theory. But it is not a textbook, and a person would be hard put to endeavor to learn the subject by reading this book."
This volume is a sequel to the much-appreciated The Cauchy Method of Residues published in 1984 (also by Kluwer under the D.Reidel imprint). Volume 1 surveyed the main results published in the period 1814--1982. The present volume contains various results which were omitted from the first volume, some results mentioned briefly in Volume 1 and discussed here in greater detail, and new results published since 1982. It also contains short expositions, by various authors, dealing with new and interesting aspects of the theory and applications of residues. This volume will be of interest to researchers and graduate students in complex analysis, and also physicists and engineers whose work involves the application of complex functions.
Analysis at Large is dedicated to Jean Bourgain whose research has deeply influenced the mathematics discipline, particularly in analysis and its interconnections with other fields. In this volume, the contributions made by renowned experts present both research and surveys on a wide spectrum of subjects, each of which pay tribute to a true mathematical pioneer. Examples of topics discussed in this book include Bourgain's discretized sum-product theorem, his work in nonlinear dispersive equations, the slicing problem by Bourgain, harmonious sets, the joint spectral radius, equidistribution of affine random walks, Cartan covers and doubling Bernstein type inequalities, a weighted Prekopa-Leindler inequality and sumsets with quasicubes, the fractal uncertainty principle for the Walsh-Fourier transform, the continuous formulation of shallow neural networks as Wasserstein-type gradient flows, logarithmic quantum dynamical bounds for arithmetically defined ergodic Schroedinger operators, polynomial equations in subgroups, trace sets of restricted continued fraction semigroups, exponential sums, twisted multiplicativity and moments, the ternary Goldbach problem, as well as the multiplicative group generated by two primes in Z/QZ. It is hoped that this volume will inspire further research in the areas of analysis treated in this book and also provide direction and guidance for upcoming developments in this essential subject of mathematics.
Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2002. The subject of this book is the study of automorphic distributions, by which is meant distributions on R2 invariant under the linear action of SL(2, Z), and of the operators associated with such distributions under the Weyl rule of symbolic calculus. Researchers and postgraduates interested in pseudodifferential analyis, the theory of non-holomorphic modular forms, and symbolic calculi will benefit from the clear exposition and new results and insights. |
![]() ![]() You may like...
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R936
Discovery Miles 9 360
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R902
Discovery Miles 9 020
Fundamentals of Complex Analysis with…
Edward Saff, Arthur Snider
Paperback
R2,293
Discovery Miles 22 930
A Treatise on Differential Equations…
J (John) 1803-1887 Hymers
Hardcover
R935
Discovery Miles 9 350
|