![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spaces.
The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. In recent years, due largely to the work of G.B. Price, there has been a resurgence of interest in the study of these numbers and, more importantly, in the study of functions defined on the ring of bicomplex numbers, which mimic the behavior of holomorphic functions of a complex variable. While the algebra of bicomplex numbers is a four-dimensional real algebra, it is useful to think of it as a "complexification" of the field of complex numbers; from this perspective, the bicomplex algebra possesses the properties of a one-dimensional theory inside four real dimensions. Its rich analysis and innovative geometry provide new ideas and potential applications in relativity and quantum mechanics alike. The book will appeal to researchers in the fields of complex, hypercomplex and functional analysis, as well as undergraduate and graduate students with an interest in one- or multidimensional complex analysis.
From the Preface by H. Halberstam: "The unexpected arrival of Loo-Keng Hua in Europe in the fall of 1978 was for many of us a romantic event, a legend come to life. What had long been (and had seemed destined to remain) merely a revered name in the mathematical annals of our times assumed suddenly the handsome presence of the man himself, dignified yet jovial, youthful yet wise, serene yet ever questing for new achievements; and we realized how very much we had missed by his thirty years' absence from the international scene. While the publication of theses "Selecta" from his writings needs no justification beyond what is in them, it will, I hope, serve also as a way of saying a most cordial "welcome back". It has been an honor for me to play a small role in producing the Selecta. To select only parts from the imposing whole is automatically to be wrong, and it may well seem in the long run (to quote loosely from a poem of Hua himself) that I have repaid gifts in jade with artifacts of wood. ..."
The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto, and attended by about fifty mathematicians. This volume validates and commemorates the workshop, and records some of the ideas that were developed within. The corona problem dates back to 1941. It has exerted a powerful influence over mathematical analysis for nearly 75 years. There is material to help bring people up to speed in the latest ideas of the subject, as well as historical material to provide background. Particularly noteworthy is a history of the corona problem, authored by the five organizers, that provides a unique glimpse at how the problem and its many different solutions have developed. There has never been a meeting of this kind, and there has never been a volume of this kind. Mathematicians-both veterans and newcomers-will benefit from reading this book. This volume makes a unique contribution to the analysis literature and will be a valuable part of the canon for many years to come.
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Cebysv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes and Comments where bibliographical references are primarily discussed. Thanks to the kind feedback from many readers, some errors in the first edition have been corrected. In order to keep the book up-to-date, new references have been added to the bibliography. Researchers and graduate students interested in PDEs, functional analysis and probability will find this volume useful.
Extending Griffiths' classical theory of period mappings for compact Kahler manifolds, this book develops and applies a theory of period mappings of "Hodge-de Rham type" for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Froelicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkahler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.
This book is a history of complex function theory from its origins to 1914, when the essential features of the modern theory were in place. It is the first history of mathematics devoted to complex function theory, and it draws on a wide range of published and unpublished sources. In addition to an extensive and detailed coverage of the three founders of the subject - Cauchy, Riemann, and Weierstrass - it looks at the contributions of authors from d'Alembert to Hilbert, and Laplace to Weyl. Particular chapters examine the rise and importance of elliptic function theory, differential equations in the complex domain, geometric function theory, and the early years of complex function theory in several variables. Unique emphasis has been devoted to the creation of a textbook tradition in complex analysis by considering some seventy textbooks in nine different languages. The book is not a mere sequence of disembodied results and theories, but offers a comprehensive picture of the broad cultural and social context in which the main actors lived and worked by paying attention to the rise of mathematical schools and of contrasting national traditions. The book is unrivaled for its breadth and depth, both in the core theory and its implications for other fields of mathematics. It documents the motivations for the early ideas and their gradual refinement into a rigorous theory.
This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 - 2013. Containing cutting-edge results by an impressive array of mathematicians, engineers, and scientists in academia, industry, and government, it will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, physics, and engineering. Topics covered include * spectral analysis and correlation; * radar and communications: design, theory, and applications; * sparsity * special topics in harmonic analysis. The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.
This book deals with various aspects of commutants and reducing subspaces of multiplication operators on the Bergman space, along with relevant von Neumann algebras generated by these operators, which have been the focus of considerable attention from the authors and other experts in recent years. The book reviews past developments and offers insights into cutting-edge developments in the study of multiplication operators. It also provides commentary and comparisons to stimulate research in this area.
The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.
This book provides a detailed and largely self-contained description of various classical and new results on solvability and unsolvability of equations in explicit form. In particular, it offers a complete exposition of the relatively new area of topological Galois theory, initiated by the author. Applications of Galois theory to solvability of algebraic equations by radicals, basics of Picard–Vessiot theory, and Liouville's results on the class of functions representable by quadratures are also discussed. A unique feature of this book is that recent results are presented in the same elementary manner as classical Galois theory, which will make the book useful and interesting to readers with varied backgrounds in mathematics, from undergraduate students to researchers. In this English-language edition, extra material has been added (Appendices A–D), the last two of which were written jointly with Yura Burda.
Since its introduction in the early 1980s quasiconformal surgery has become a major tool in the development of the theory of holomorphic dynamics, and it is essential background knowledge for any researcher in the field. In this comprehensive introduction the authors begin with the foundations and a general description of surgery techniques before turning their attention to a wide variety of applications. They demonstrate the different types of surgeries that lie behind many important results in holomorphic dynamics, dealing in particular with Julia sets and the Mandelbrot set. Two of these surgeries go beyond the classical realm of quasiconformal surgery and use trans-quasiconformal surgery. Another deals with holomorphic correspondences, a natural generalization of holomorphic maps. The book is ideal for graduate students and researchers requiring a self-contained text including a variety of applications. It particularly emphasises the geometrical ideas behind the proofs, with many helpful illustrations seldom found in the literature.
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the "4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems," which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysics, and from nonlinear analysis to the history of chaos theory. The corresponding proceedings collected in this volume address a broad spectrum of contemporary topics, including but not limited to networks, circuits, systems, biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, management complexity and global systems.
Complexity science is the study of systems with many interdependent components. Such systems - and the self-organization and emergent phenomena they manifest - lie at the heart of many challenges of global importance. This book is a coherent introduction to the mathematical methods used to understand complexity, with plenty of examples and real-world applications. It starts with the crucial concepts of self-organization and emergence, then tackles complexity in dynamical systems using differential equations and chaos theory. Several classes of models of interacting particle systems are studied with techniques from stochastic analysis, followed by a treatment of the statistical mechanics of complex systems. Further topics include numerical analysis of PDEs, and applications of stochastic methods in economics and finance. The book concludes with introductions to space-time phases and selfish routing. The exposition is suitable for researchers, practitioners and students in complexity science and related fields at advanced undergraduate level and above.
Hans Grauert was one of the world's leading mathematicians in the field of Several Complex Variables; he not only shaped the development of this area decisively but was also responsible for some of its most important results. This representative selection of mathematical papers exhibits Grauert's influential research and reflects two decades of excellence. In this edition, each paper has been augmented by a detailed commentary, thus offering a comprehensive survey of the development of this fascinating subject from its beginnings in Munster and Goettingen. Hans Grauert may be regarded as a direct successor of Gauss, holding a chair at Goettingen that before him was held by Siegel, Weyl, Hilbert, Riemann and Gauss.
This book addresses the need for an accessible comprehensive exposition of the theory of uniform measures; the need that became more critical when recently uniform measures reemerged in new results in abstract harmonic analysis. Until now, results about uniform measures have been scattered through many papers written by a number of authors, some unpublished, written using a variety of definitions and notations. Uniform measures are certain functionals on the space of bounded uniformly continuous functions on a uniform space. They are a common generalization of several classes of measures and measure-like functionals studied in abstract and topological measure theory, probability theory, and abstract harmonic analysis. They offer a natural framework for results about topologies on spaces of measures and about the continuity of convolution of measures on topological groups and semitopological semigroups. The book is a reference for the theory of uniform measures. It includes a self-contained development of the theory with complete proofs, starting with the necessary parts of the theory of uniform spaces. It presents diverse results from many sources organized in a logical whole, and includes several new results. The book is also suitable for graduate or advanced undergraduate courses on selected topics in topology and functional analysis. The text contains a number of exercises with solution hints, and four problems with suggestions for further research.
Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors' investigations, and this new monograph will be interesting for researchers studying the theory of functions.
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincare, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
This book is related to the theory of functions of a-bounded type in the ha- plane of the complex plane. I constructed this theory by application of the Li- ville integro-differentiation. To some extent, it is similar to M.M.Djrbashian's factorization theory of the classes Na of functions of a-bounded type in the disc, as much as the well known results on different classes and spaces of regular functions in the half-plane are similar to those in the disc. Besides, the book contains improvements of several results such as the Phragmen-Lindelof Principle and Nevanlinna Factorization in the Half-Plane and offers a new, equivalent definition of the classical Hardy spaces in the half-plane. The last chapter of the book presents author's united work with G.M. Gubreev (Odessa). It gives an application of both a-theories in the disc and in the half-plane in the spectral theory of linear operators. This is a solution of a problem repeatedly stated by M.G.Krein and being of special interest for a long time. The book is proposed for a wide range of readers. Some of its parts are comprehensible for graduate students, while the book in the whole is intended for young researchers and qualified specialists in the field.
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL... In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time... this publication...will no doubt stimulate generations of scholars to come." Volume IV collects Siegels papers from 1968 to 1975.
This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an "Answers or Hints" section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. This first volume focuses on the analysis of real-valued functions of a real variable. Besides developing the basic theory it describes many applications, including a chapter on Fourier series. It also includes a Prologue in which the author introduces the axioms of set theory and uses them to construct the real number system. Volume II goes on to consider metric and topological spaces and functions of several variables. Volume III covers complex analysis and the theory of measure and integration.
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL, who is rising seventy. In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time...this publication...will no doubt stimulate generations of scholars to come." Volume II includes Siegel's papers written between 1937 and 1944. |
You may like...
Artificial Intelligence Technologies and…
Tomayess Issa, Pedro Isaias
Hardcover
R5,697
Discovery Miles 56 970
My Revision Notes: WJEC and Eduqas GCSE…
Robert Wicks, Ian Paget
Paperback
R447
Discovery Miles 4 470
|