![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Historically, complex analysis and geometrical function theory have been inten sively developed from the beginning of the twentieth century. They provide the foundations for broad areas of mathematics. In the last fifty years the theory of holomorphic mappings on complex spaces has been studied by many mathemati cians with many applications to nonlinear analysis, functional analysis, differential equations, classical and quantum mechanics. The laws of dynamics are usually presented as equations of motion which are written in the abstract form of a dy namical system: dx / dt + f ( x) = 0, where x is a variable describing the state of the system under study, and f is a vector function of x. The study of such systems when f is a monotone or an accretive (generally nonlinear) operator on the under lying space has been recently the subject of much research by analysts working on quite a variety of interesting topics, including boundary value problems, integral equations and evolution problems (see, for example, [19, 13] and [29]). In a parallel development (and even earlier) the generation theory of one parameter semigroups of holomorphic mappings in en has been the topic of interest in the theory of Markov stochastic processes and, in particular, in the theory of branching processes (see, for example, [63, 127, 48] and [69]).
In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carath odory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.
The First International Congress of the International Society for Analysis, its Applications and Computations (ISAAC'97) was held at the University of Delaware from 3 to 7 June 1997. As specified in the invitation of the President Professor Robert P. Gilbert of the ISAAC, we organized the session on Reproducing Kerneis and Their Applications. In our session, we presented 24 engaging talks on topics of current interest to the research community. As suggested and organized by Professor Gilbert, we hereby publish its Proceedings. Rather than restricting the papers to Congress participants, we asked the Ieading mathematicians in the field of the theory of reproducing kern eIs to submit papers. However, due to time restrietions and a compulsion to limit the Proceedings a reasonable size, we were unable to obtain a comprehensive treatment of the theory of reproducing kernels. Nevertheless, we hope this Proceedings of the First International Conference on reproducing kerneis will become a significant reference volume. Indeed, we believe that the theory of reproducing kernels will stand out as a fundamental and beautiful contribution in mathematical sciences with a broad array of applications to other areas of mathematics and science. We would like to thank Professor Robert Gilbert for his substantial contri bu tions to the Congress and to our Proceedings. We also express our sincere thanks to the staff of the University of Delaware for their manifold cooperation in organizing the Congress."
Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B. C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D. M. Bressoud), theta functions in complex analysis (H. M. Farkas), representation functions in additive number theory (M. B. Nathanson), and mock theta functions, ranks, and Maass forms (K. Ono), and elliptic functions (M. Waldschmidt).
Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU' ' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series."
This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ." . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.
This book is an account of the theory of Hardy spaces in one dimension, with emphasis on some of the exciting developments of the past two decades or so. The last seven of the ten chapters are devoted in the main to these recent developments. The motif of the theory of Hardy spaces is the interplay between real, complex, and abstract analysis. While paying proper attention to each of the three aspects, the author has underscored the effectiveness of the methods coming from real analysis, many of them developed as part of a program to extend the theory to Euclidean spaces, where the complex methods are not available.
An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject.
This book deals with the theory of Kac algebras and their dual ity, elaborated independently by M. Enock and J . -M. Schwartz, and by G. !. Kac and L. !. Vajnermann in the seventies. The sub ject has now reached a state of maturity which fully justifies the publication of this book. Also, in recent times, the topic of "quantum groups" has become very fashionable and attracted the attention of more and more mathematicians and theoret ical physicists. One is still missing a good characterization of quantum groups among Hopf algebras, similar to the character ization of Lie groups among locally compact groups. It is thus extremely valuable to develop the general theory, as this book does, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. The original motivation of M. Enock and J. -M. Schwartz can be formulated as follows: while in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of T. Tannaka, M. G. Krein, W. F. Stinespring . . . dealing with non abelian locally compact groups. The aim is then, in the line proposed by G. !. Kac in 1961 and M. Takesaki in 1972, to find a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality.
One service mathematics has rendered the "Et moi, ..., si j'avait su comment en revenir, human race. It has put common sense back je n 'y serais point all
Vitushkin's conjecture, a special case of Painlev 's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters 1-5 of the book provide important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.
Can be used as a graduate text Contains many exercises Contains new results
Complex Analysis with Applications in Science and Engineering weaves together theory and extensive applications in mathematics, physics and engineering. In this edition there are many new problems, revised sections, and an entirely new chapter on analytic continuation. This work will serve as a textbook for undergraduate and graduate students in the areas noted above. Key Features of this Second Edition: Excellent coverage of topics such as series, residues and the evaluation of integrals, multivalued functions, conformal mapping, dispersion relations and analytic continuation Systematic and clear presentation with many diagrams to clarify discussion of the material Numerous worked examples and a large number of assigned problems
This volume grew out of a series of preprints which were written and circulated - tween 1993 and 1994. Around the same time, related work was done independently by Harder [40] and Laumon [62]. In writing this text based on a revised version of these preprints that were widely distributed in summer 1995, I ?nally did not p- sue the original plan to completely reorganize the original preprints. After the long delay, one of the reasons was that an overview of the results is now available in [115]. Instead I tried to improve the presentation modestly, in particular by adding cross-references wherever I felt this was necessary. In addition, Chaps. 11 and 12 and Sects. 5. 1, 5. 4, and 5. 5 were added; these were written in 1998. I willgivea moredetailedoverviewofthecontentofthedifferentchaptersbelow. Before that I should mention that the two main results are the proof of Ramanujan's conjecture for Siegel modular forms of genus 2 for forms which are not cuspidal representations associated with parabolic subgroups(CAP representations), and the study of the endoscopic lift for the group GSp(4). Both topics are formulated and proved in the ?rst ?ve chapters assuming the stabilization of the trace formula. All the remaining technical results, which are necessary to obtain the stabilized trace formula, are presented in the remaining chapters. Chapter 1 gathers results on the cohomology of Siegel modular threefolds that are used in later chapters, notably in Chap. 3. At the beginning of Chap.
In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions.
S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous K hler manifolds.- S.G. Greenfield: Extendibility properties of real submanifolds of Cn.- W. Kaup: Holomorphische Abbildungen in Hyperbolische R ume.- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains.- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement sym triques.- S. Murakami: Plongements holomorphes de domaines sym triques.- E.M. Stein: The analogues of Fatous 's theorem and estimates for maximal functions.
A. Dynin: Pseudo-differential operators on Heisenberg groups.- A. Dynin: An index formula for elliptic boundary problems.- G.I. Eskin: General mixed boundary problems for elliptic differential equations.- B. Helffer: Hypoellipticite pour des operateurs differentiels sur des groupes de Lie nilpotents.- J.J. Kohn: Lectures on degenerate elliptic problems.- K. Taira: Conditions necessaires et suffisantes pour l'existence et l'unicite des solutions du probleme de la derivee oblique.- F. Treves: Boundary value problems for elliptic equations.
The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson S- mation Formula. We ?rst prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for Type I groups. The generalization of the Poisson Summation Formula to non-abelian groups is the S- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. As examples for the application of the Trace F- mula we treat the Heisenberg group and the group SL (R). In the 2 2 former case the trace formula yields a decomposition of the L -space of the Heisenberg group modulo a lattice. In the case SL (R), the 2 trace formula is used to derive results like the Weil asymptotic law for hyperbolic surfaces and to provide the analytic continuation of the Selberg zeta function. We ?nally include a chapter on the app- cations of abstract Harmonic Analysis on the theory of wavelets. The present book is a text book for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up of the First Course in Harmonic Analysis, [9], or indep- dently, if the students have required a modest knowledge of Fourier Analysis already. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in [9].
This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.
In the Riemann zeta function ?(s), the non-real zeros or Riemann zeros, denoted ?, play an essential role mainly in number theory, and thereby g- erate considerable interest. However, they are very elusive objects. Thus, no individual zero has an analytically known location; and the Riemann - pothesis, which states that all those zeros should lie on the critical line, i.e., 1 haverealpart, haschallengedmathematicianssince1859(exactly150years 2 ago). For analogous symmetric sets of numbers{v}, such as the roots of a k polynomial, the eigenvalues of a ?nite or in?nite matrix, etc., it is well known that symmetric functions of the{v} tend to have more accessible properties k than the individual elements v . And, we ?nd the largest wealth of explicit k properties to occur in the (generalized) zeta functions of the generic form 's Zeta(s, a)= (v ]a) k k (with the extra option of replacing v here by selected functions f(v )). k k Not surprisingly, then, zeta functions over the Riemann zeros have been considered, some as early as 1917.What is surprising is how small the lite- ture on those zeta functions has remained overall.We were able to spot them in barely a dozen research articles over the whole twentieth century and in none ofthebooks featuring the Riemannzeta function. So the domainexists, but it has remained largely con?dential and sporadically covered, in spite of a recent surge of interest. Could it then be that those zeta functions have few or uninteresting pr- erties?Inactualfact, theirstudyyieldsanabundanceofquiteexplicitresu
In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups. The focus is on the spectra and eigenspaces of convolution operators on these spaces, defined by matrix-valued measures. Among various spectral results, the L2-spectrum of such an operator is completely determined and as an application, the spectrum of a discrete Laplacian on a homogeneous graph is computed using this result. The contractivity properties of matrix convolution semigroups are studied and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions.
All modem introductions to complex analysis follow, more or less explicitly, the pattern laid down in Whittaker and Watson 75]. In "part I'' we find the foundational material, the basic definitions and theorems. In "part II" we find the examples and applications. Slowly we begin to understand why we read part I. Historically this is an anachronism. Pedagogically it is a disaster. Part II in fact predates part I, so clearly it can be taught first. Why should the student have to wade through hundreds of pages before finding out what the subject is good for? In teaching complex analysis this way, we risk more than just boredom. Beginning with a series of unmotivated definitions gives a misleading impression of complex analy sis in particular and of mathematics in general. The classical theory of analytic functions did not arise from the idle speculation of bored mathematicians on the possible conse quences of an arbitrary set of definitions; it was the natural, even inevitable, consequence of the practical need to answer questions about specific examples. In standard texts, after hundreds of pages of theorems about generic analytic functions with only the rational and trigonometric functions as examples, students inevitably begin to believe that the purpose of complex analysis is to produce more such theorems. We require introductory com plex analysis courses of our undergraduates and graduates because it is useful both within mathematics and beyond."
Vector?eldsonmanifoldsplaymajorrolesinmathematicsandothersciences. In particular, the Poincar' e-Hopf index theorem and its geometric count- part,the Gauss-Bonnettheorem, giveriseto the theoryof Chernclasses,key invariants of manifolds in geometry and topology. One has often to face problems where the underlying space is no more a manifold but a singular variety. Thus it is natural to ask what is the "good" notionofindexofavector?eld,andofChernclasses,ifthespaceacquiress- gularities.Thequestionwasexploredbyseveralauthorswithvariousanswers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph. Marseille Jean-Paul Brasselet Cuernavaca Jos' e Seade Tokyo Tatsuo Suwa September 2009 v Acknowledgements Parts of this monograph were written while the authors were staying at various institutions, such as Hokkaido University and Niigata University in Japan, CIRM, Universit' e de la Mediterran' ee and IML at Marseille, France, the Instituto de Matem' aticas of UNAM at Cuernavaca, Mexico, ICTP at Trieste, Italia, IMPA at Rio de Janeiro, and USP at S" ao Carlos in Brasil, to name a few, and we would like to thank them for their generous hospitality and support. Thanks are also due to people who helped us in many ways, in particular our co-authors of results quoted in the book: Marcelo Aguilar, Wolfgang Ebeling, Xavier G' omez-Mont, Sabir Gusein-Zade, LeDung " Tran ' g, Daniel Lehmann, David Massey, A.J. Parameswaran, Marcio Soares, Mihai Tibar, Alberto Verjovsky,andmanyother colleagueswho helped usin variousways.
Pseudoanalytic function theory generalizes and preserves many crucial features of complex analytic function theory. The Cauchy-Riemann system is replaced by a much more general first-order system with variable coefficients which turns out to be closely related to important equations of mathematical physics. This relation supplies powerful tools for studying and solving SchrAdinger, Dirac, Maxwell, Klein-Gordon and other equations with the aid of complex-analytic methods. The book is dedicated to these recent developments in pseudoanalytic function theory and their applications as well as to multidimensional generalizations. It is directed to undergraduates, graduate students and researchers interested in complex-analytic methods, solution techniques for equations of mathematical physics, partial and ordinary differential equations.
Presents Real & Complex Analysis Together Using a Unified Approach A two-semester course in analysis at the advanced undergraduate or first-year graduate level Unlike other undergraduate-level texts, Real and Complex Analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA's 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book's website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks-one for real function theory and one for complex function theory. |
You may like...
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R920
Discovery Miles 9 200
Elements of the Infinitesimal Calculus…
James Gregory 1837-1924 Clark
Hardcover
R1,013
Discovery Miles 10 130
Multidimensional Integral…
Alexander M. Kytmanov, Simona G Myslivets
Hardcover
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
|