![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
In recent years, algorithmic graph theory has become increasingly important as a link between discrete mathematics and theoretical computer science. This textbook introduces students of mathematics and computer science to the interrelated fields of graphs theory, algorithms and complexity.
The space Q p consists of all holomorphic functions f on the unit disk for which the L^2 area integrals of its derivative against the p-th power of the Green function of the unit disk are uniformly bounded in the variable that survives the integration. It turns out that Q 1 coincides with BMOA, while, for p>1, Q p are just the Bloch space. For p/in (0,1) the Q p furnish an increasing sequence of spaces, each invariant under conformal mappings of the unit disk onto itself, which interpolate between the Dirichlet space and BMOA. This monograph covers a number of important aspects in complex, functional and harmonic analysis. The primary focus is Q p, p/in (0,1), and their equivalent characterizations. Based on the up-to-date results obtained by experts in their respective fields, each of the eight chapters unfolds from the basics to the more complex. The exposition here is rapid-paced and efficient, with proofs and examples.
Over seventy years ago, Richard Bellman coined the term "the curse of dimensionality" to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation-that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book's companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
From the reviews: "Here is a momumental work by Doob, one of the masters, in which Part 1 develops the potential theory associated with Laplace's equation and the heat equation, and Part 2 develops those parts (martingales and Brownian motion) of stochastic process theory which are closely related to Part 1." --G.E.H. Reuter in Short Book Reviews (1985)
There has been fundamental progress in complex differential geometry in the last two decades. For one, The uniformization theory of canonical K hler metrics has been established in higher dimensions, and many applications have been found, including the use of Calabi-Yau spaces in superstring theory. This monograph gives an introduction to the theory of canonical K hler metrics on complex manifolds. It also presents some advanced topics not easily found elsewhere.
The Schwarz function originates in classical complex analysis and potential theory. In this text, the author presents the advantages of the function, favouring a mode of treatment which unites the subject with modern theory of distributions and partial differential equations - thus bridging the gap between two-dimensional analysts. The author examines the Schwarz function and its relationship to recent investigations regarding inverse problems of Newtonian gravitation, free boundaries, Hele-Shaw flows and the propagation of singularities for holomorphic partial differential equations.
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.
This text represents over 20 years of research on distortions of functionals under actions of linear integral operators. It is divided into two parts. The first part addresses linear integral operators, establishing their properties and attempting to arrive at both specializations as well as generalizations to be used in the second part. The second part is devoted mainly to the development of several kinds of distortions under actions of integral operators for various familiar functionals. Among the topics that are treated are absolute modulus, real part, range, length and area, angular and derivative. Also, distortions on the class of univalent functions and its subclasses, Caratheodory class, and distortions by a differential operator are dealt with.
This book focuses on complex analytic dynamics, which dates from 1916 and is currently attracting considerable interest. The text provides a comprehensive, well-organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The coverage extends from early memoirs of Fatou and Julia to important recent results and methods of Sullivan and Shishikura. Many details of the proofs have not appeared in print before.
The "Wiley Classics Library" consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hope to extend the life of these important works by making them available to future generations of mathematicians and scientists.
This book contains the notes of five short courses delivered at the "Centro Internazionale Matematico Estivo" session "Integral Geometry, Radon Transforms and Complex Analysis" held in Venice (Italy) in June 1996: three of them deal with various aspects of integral geometry, with a common emphasis on several kinds of Radon transforms, their properties and applications, the other two share a stress on CR manifolds and related problems. All lectures are accessible to a wide audience, and provide self-contained introductions and short surveys on the subjects, as well as detailed expositions of selected results.
From the reviews: "This volume... consists of two papers. The
first, written by V.V. Shokurov, is devoted to the theory of
Riemann surfaces and algebraic curves. It is an excellent overview
of the theory of relations between Riemann surfaces and their
models - complex algebraic curves in complex projective spaces. ...
The second paper, written by V.I. Danilov, discusses algebraic
varieties and schemes. ... I can recommend the book as a very good
introduction to the basic algebraic geometry." "European
Mathematical Society" "Newsletter, 1996"
Develops the higher parts of function theory in a unified presentation. Starts with elliptic integrals and functions and uniformization theory, continues with automorphic functions and the theory of abelian integrals and ends with the theory of abelian functions and modular functions in several variables. The last topic originates with the author and appears here for the first time in book form.
This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory." The construction of minimal models was discussed by T."
The articles in this volume were written to commemorate Reinhold Remmert's 60th birthday in June, 1990. They are surveys, meant to facilitate access to some of the many aspects of the theory of complex manifolds, and demonstrate the interplay between complex analysis and many other branches of mathematics, algebraic geometry, differential topology, representations of Lie groups, and mathematical physics being only the most obvious of these branches. Each of these articles should serve not only to describe the particular circle of ideas in complex analysis with which it deals but also as a guide to the many mathematical ideas related to its theme.
This book is an outgrowth of lectures given at several occasions at the University of Göteborg and Chalmers University of Technology during the last ten years. Contrary to most introductory texts on complex analysis, it preassumes knowledge of basic analysis. This makes it possible to move rather quickly through the most fundamental material and to reach within a one-semester course some classical highlights such as Fatou theorems and some Nevanlinna theory, as well as more recent topics, for example the corona theorem and the H1-BMO duality.
A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincare metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painleve smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.
A two-part volume containing a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications, and a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behaviour, value distributions, degeneration, uniqueness etc).
The area covered by this volume represents a broad choice of some interesting research topics in the field of dynamical systems and applications of nonlinear analysis to ordinary and partial differential equations. The contributed papers, written by well known specialists, make this volume a useful tool both for the experts (who can find recent and new results) and for those who are interested in starting a research work in one of these topics (who can find some updated and carefully presented papers on the state of the art of the corresponding subject).
Analysis underpins calculus, much as calculus underpins virtually all mathematical sciences. A sound understanding of analysis' results and techniques is therefore valuable for a wide range of disciplines both within mathematics itself and beyond its traditional boundaries. This text seeks to develop such an understanding for undergraduate students on mathematics and mathematically related programmes. Keenly aware of contemporary students' diversity of motivation, background knowledge and time pressures, it consistently strives to blend beneficial aspects of the workbook, the formal teaching text, and the informal and intuitive tutorial discussion. The authors devote ample space and time for development of confidence in handling the fundamental ideas of the topic. They also focus on learning through doing, presenting a comprehensive range of examples and exercises, some worked through in full detail, some supported by sketch solutions and hints, some left open to the reader's initiative. Without undervaluing the absolute necessity of secure logical argument, they legitimise the use of informal, heuristic, even imprecise initial explorations of problems aimed at deciding how to tackle them. In this respect they authors create an atmosphere like that of an apprenticeship, in which the trainee analyst can look over the shoulder of the experienced practitioner.
This book is an introduction to the theory of entire and meromorphic functions intended for advanced graduate students in mathematics and for professional mathematicians. The book provides a clear treatment of the Nevanlinna theory of value distribution of meromorphic functions, and presentation of the Rubel-Taylor Fourier Series method for meromorphic functions and the Miles theorem on efficient quotient representation. It has a concise but complete treatment of the Polya theory of the Borel transform and the conjugate indicator diagram. It contains some of Buck's results on integer-valued entire functions, and closes with the Malliavin-Rubel uniqueness theorem. The approach gets to the heart of the matter without excessive scholarly detours. It prepares the reader for further study of the vast literature on the subject, which is one of the cornerstones of complex analysis.
This book provides a classification of all three-dimensional complex manifolds for which there exists a transitive action (by biholomorphic transformations) of a real Lie group. This means two homogeneous complex manifolds are considered equivalent if they are isomorphic as complex manifolds. The classification is based on methods from Lie group theory, complex analysis and algebraic geometry. Basic knowledge in these areas is presupposed.
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, K hlerianity, geodesics, curvature. Finally global geometry and complex Monge-Amp re equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields. |
You may like...
Wireless Communications for Power…
Basile L. Agba, Fabien Sacuto, …
Hardcover
R3,791
Discovery Miles 37 910
Introduction to Microelectromechanical…
Hector J de los Santos
Hardcover
R3,188
Discovery Miles 31 880
Silica-based Buried Channel Waveguides…
F. Ladouceur, J. Love
Hardcover
R4,100
Discovery Miles 41 000
Optical Properties of Advanced Materials
Yoshinobu Aoyagi, Kotaro Kajikawa
Hardcover
|