![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This text represents over 20 years of research on distortions of functionals under actions of linear integral operators. It is divided into two parts. The first part addresses linear integral operators, establishing their properties and attempting to arrive at both specializations as well as generalizations to be used in the second part. The second part is devoted mainly to the development of several kinds of distortions under actions of integral operators for various familiar functionals. Among the topics that are treated are absolute modulus, real part, range, length and area, angular and derivative. Also, distortions on the class of univalent functions and its subclasses, Caratheodory class, and distortions by a differential operator are dealt with.
The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painleve equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.
This book focuses on complex analytic dynamics, which dates from 1916 and is currently attracting considerable interest. The text provides a comprehensive, well-organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The coverage extends from early memoirs of Fatou and Julia to important recent results and methods of Sullivan and Shishikura. Many details of the proofs have not appeared in print before.
The "Wiley Classics Library" consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hope to extend the life of these important works by making them available to future generations of mathematicians and scientists.
This book contains the notes of five short courses delivered at the "Centro Internazionale Matematico Estivo" session "Integral Geometry, Radon Transforms and Complex Analysis" held in Venice (Italy) in June 1996: three of them deal with various aspects of integral geometry, with a common emphasis on several kinds of Radon transforms, their properties and applications, the other two share a stress on CR manifolds and related problems. All lectures are accessible to a wide audience, and provide self-contained introductions and short surveys on the subjects, as well as detailed expositions of selected results.
From the reviews: "This volume... consists of two papers. The
first, written by V.V. Shokurov, is devoted to the theory of
Riemann surfaces and algebraic curves. It is an excellent overview
of the theory of relations between Riemann surfaces and their
models - complex algebraic curves in complex projective spaces. ...
The second paper, written by V.I. Danilov, discusses algebraic
varieties and schemes. ... I can recommend the book as a very good
introduction to the basic algebraic geometry." "European
Mathematical Society" "Newsletter, 1996"
Develops the higher parts of function theory in a unified presentation. Starts with elliptic integrals and functions and uniformization theory, continues with automorphic functions and the theory of abelian integrals and ends with the theory of abelian functions and modular functions in several variables. The last topic originates with the author and appears here for the first time in book form.
This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory." The construction of minimal models was discussed by T."
The articles in this volume were written to commemorate Reinhold Remmert's 60th birthday in June, 1990. They are surveys, meant to facilitate access to some of the many aspects of the theory of complex manifolds, and demonstrate the interplay between complex analysis and many other branches of mathematics, algebraic geometry, differential topology, representations of Lie groups, and mathematical physics being only the most obvious of these branches. Each of these articles should serve not only to describe the particular circle of ideas in complex analysis with which it deals but also as a guide to the many mathematical ideas related to its theme.
This book is an outgrowth of lectures given at several occasions at the University of Göteborg and Chalmers University of Technology during the last ten years. Contrary to most introductory texts on complex analysis, it preassumes knowledge of basic analysis. This makes it possible to move rather quickly through the most fundamental material and to reach within a one-semester course some classical highlights such as Fatou theorems and some Nevanlinna theory, as well as more recent topics, for example the corona theorem and the H1-BMO duality.
A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincare metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painleve smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
This book is an introduction to the theory of entire and meromorphic functions intended for advanced graduate students in mathematics and for professional mathematicians. The book provides a clear treatment of the Nevanlinna theory of value distribution of meromorphic functions, and presentation of the Rubel-Taylor Fourier Series method for meromorphic functions and the Miles theorem on efficient quotient representation. It has a concise but complete treatment of the Polya theory of the Borel transform and the conjugate indicator diagram. It contains some of Buck's results on integer-valued entire functions, and closes with the Malliavin-Rubel uniqueness theorem. The approach gets to the heart of the matter without excessive scholarly detours. It prepares the reader for further study of the vast literature on the subject, which is one of the cornerstones of complex analysis.
A two-part volume containing a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications, and a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behaviour, value distributions, degeneration, uniqueness etc).
The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.
The area covered by this volume represents a broad choice of some interesting research topics in the field of dynamical systems and applications of nonlinear analysis to ordinary and partial differential equations. The contributed papers, written by well known specialists, make this volume a useful tool both for the experts (who can find recent and new results) and for those who are interested in starting a research work in one of these topics (who can find some updated and carefully presented papers on the state of the art of the corresponding subject).
Analysis underpins calculus, much as calculus underpins virtually all mathematical sciences. A sound understanding of analysis' results and techniques is therefore valuable for a wide range of disciplines both within mathematics itself and beyond its traditional boundaries. This text seeks to develop such an understanding for undergraduate students on mathematics and mathematically related programmes. Keenly aware of contemporary students' diversity of motivation, background knowledge and time pressures, it consistently strives to blend beneficial aspects of the workbook, the formal teaching text, and the informal and intuitive tutorial discussion. The authors devote ample space and time for development of confidence in handling the fundamental ideas of the topic. They also focus on learning through doing, presenting a comprehensive range of examples and exercises, some worked through in full detail, some supported by sketch solutions and hints, some left open to the reader's initiative. Without undervaluing the absolute necessity of secure logical argument, they legitimise the use of informal, heuristic, even imprecise initial explorations of problems aimed at deciding how to tackle them. In this respect they authors create an atmosphere like that of an apprenticeship, in which the trainee analyst can look over the shoulder of the experienced practitioner.
This book provides a classification of all three-dimensional complex manifolds for which there exists a transitive action (by biholomorphic transformations) of a real Lie group. This means two homogeneous complex manifolds are considered equivalent if they are isomorphic as complex manifolds. The classification is based on methods from Lie group theory, complex analysis and algebraic geometry. Basic knowledge in these areas is presupposed.
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, K hlerianity, geodesics, curvature. Finally global geometry and complex Monge-Amp re equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field." This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21."
Preface of the Editors Ce volume prend sa source dans le Colloque en l'honneur de Pierre Dolbeault, organise a l'occasion de son depart a la retraite, a 'initiative des Universites de Paris 6 et de Poitiers. Ce colloque, consacre a l' Analyse Complexe et a la Geometrie Analytique, s'est tenu a Paris, sur le campus de l'Universite Pierreet Marie Curie, du 23 au 26 Juin 1992.11 areuni autour de ces themes une centaine de congressistes, dont de nombreux mathematiciens etrangers (Allemagne, Argentine, Canada, Etats-Unis, Islande, Italie, Pologne, Roumanie, Russie, Suede). Nous avons souhaite prolanger cet hommage par la publication d'un volume dedie a Pierre Dolbeault. Le present recueil d'articles ne constitue pas strictement les actes du Colloque. Nous avons voulu qu'il rassemble uniquement des articles originaux ou synthetiques, qui illustrent l' ceuvre scientifique de Pierre Dolbeault a travers les themes abordes ou la personnalite de leurs auteurs. Nous remercions les conferenciers qui ont bien voulu contribuer a cet ouvrage, et Klas Diederich de l'avoir accueilli dans la collection "Aspects of Mathematics" qu'il dirige. Au nom du Comite d'Organisation du Colloque (C. Laurent-Thiebaut, J. Le Potier, J.B. Poly, J.P. Vigue et nous-memes), nous remercions les institutions qui nous ont apporte leur aide financiere et materielle: les Universites Paris 6 et de Poitiers, la Direction de la Recherche et des Etudes Doctorales, le Centre National de la Recherche Scientifique et le Ministere de la Recherche et de la Technologie.
This book describes and gives applications of an important new tool in the study of complex analytic hypersurface singularities: the Le cycles of the hypersurface. The Le cycles and their multiplicities - the Le numbers - provide effectively calculable data which generalizes the Milnor number of an isolated singularity to the case of singularities of arbitrary dimension. The Le numbers control many topological and geometric properties of such non-isolated hypersurface singularities. This book is intended for graduate students and researchers interested in complex analytic singularities.
The 2-volume book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and methodological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras, numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.
The 2-volume-book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and metho- dological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!
This volume is a collection of surveys on function theory in euclidean n-dimensional spaces centered around the theme of quasiconformal space mappings. These surveys cover or are related to several topics including inequalities for conformal invariants and extremal length, distortion theorems, L(p)-theory of quasiconformal maps, nonlinear potential theory, variational calculus, value distribution theory of quasiregular maps, topological properties of discrete open mappings, the action of quasiconformal maps in special classes of domains, and global injectivity theorems. The present volume is the first collection of surveys on Quasiconformal Space Mappings since the origin of the theory in 1960 and this collection provides in compact form access to a wide spectrum of recent results due to well-known specialists. CONTENTS: G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen: Conformal invariants, quasiconformal maps and special functions.- F.W. Gehring: Topics in quasiconformal mappings.- T.Iwaniec: L(p)-theory of quasiregular mappings.- O. Martio: Partial differential equations and quasiregular mappings.- Yu.G. Reshetnyak: On functional classes invariant relative to homothetics.- S. Rickman: Picard's theorem and defect relation for quasiconformal mappings.- U. Srebro: Topological properties of quasiregular mappings.- J. V{is{l{: Domains and maps.- V.A. Zorich: The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems. |
You may like...
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R887
Discovery Miles 8 870
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
A Treatise on Differential Equations…
J (John) 1803-1887 Hymers
Hardcover
R919
Discovery Miles 9 190
|