![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
In the Riemann zeta function ?(s), the non-real zeros or Riemann zeros, denoted ?, play an essential role mainly in number theory, and thereby g- erate considerable interest. However, they are very elusive objects. Thus, no individual zero has an analytically known location; and the Riemann - pothesis, which states that all those zeros should lie on the critical line, i.e., 1 haverealpart, haschallengedmathematicianssince1859(exactly150years 2 ago). For analogous symmetric sets of numbers{v}, such as the roots of a k polynomial, the eigenvalues of a ?nite or in?nite matrix, etc., it is well known that symmetric functions of the{v} tend to have more accessible properties k than the individual elements v . And, we ?nd the largest wealth of explicit k properties to occur in the (generalized) zeta functions of the generic form 's Zeta(s, a)= (v ]a) k k (with the extra option of replacing v here by selected functions f(v )). k k Not surprisingly, then, zeta functions over the Riemann zeros have been considered, some as early as 1917.What is surprising is how small the lite- ture on those zeta functions has remained overall.We were able to spot them in barely a dozen research articles over the whole twentieth century and in none ofthebooks featuring the Riemannzeta function. So the domainexists, but it has remained largely con?dential and sporadically covered, in spite of a recent surge of interest. Could it then be that those zeta functions have few or uninteresting pr- erties?Inactualfact, theirstudyyieldsanabundanceofquiteexplicitresu
A. Andreotti: Nine lectures on complex analysis.- J.J. Kohn: Propagations of singularities for the Cauchy-Riemann equations.- Yum-Tong Siu: The mixed case of the direct image theorem and its applications.
One service mathematics has rendered the "Et moi, ..., si j'avait su comment en revenir, human race. It has put common sense back je n 'y serais point all
The asymptotic theory deals with the problern of determining the behaviour of a function in a neighborhood of its singular point. The function is replaced by another known function ( named the asymptotic function) close (in a sense) to the function under consideration. Many problems of mathematics, physics, and other divisions of natural sci ence bring out the necessity of solving such problems. At the present time asymptotic theory has become an important and independent branch of mathematical analysis. The present consideration is mainly based on the theory of asymp totic spaces. Each asymptotic space is a collection of asymptotics united by an associated real function which determines their growth near the given point and (perhaps) some other analytic properties. The main contents of this book is the asymptotic theory of ordinary linear differential equations with variable coefficients. The equations with power order growth coefficients are considered in detail. As the application of the theory of differential asymptotic fields, we also consider the following asymptotic problems: the behaviour of explicit and implicit functions, improper integrals, integrals dependent on a large parameter, linear differential and difference equations, etc .. The obtained results have an independent meaning. The reader is assumed to be familiar with a comprehensive course of the mathematical analysis studied, for instance at mathematical departments of universities. Further necessary information is given in this book in summarized form with proofs of the main aspects."
An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject.
Nevanlinna theory (or value distribution theory) in complex analysis is so beautiful that one would naturally be interested in determining how such a theory would look in the non Archimedean analysis and Diophantine approximations. There are two "main theorems" and defect relations that occupy a central place in N evanlinna theory. They generate a lot of applications in studying uniqueness of meromorphic functions, global solutions of differential equations, dynamics, and so on. In this book, we will introduce non-Archimedean analogues of Nevanlinna theory and its applications. In value distribution theory, the main problem is that given a holomorphic curve f : C -+ M into a projective variety M of dimension n and a family 01 of hypersurfaces on M, under a proper condition of non-degeneracy on f, find the defect relation. If 01 n is a family of hyperplanes on M = r in general position and if the smallest dimension of linear subspaces containing the image f(C) is k, Cartan conjectured that the bound of defect relation is 2n - k + 1. Generally, if 01 is a family of admissible or normal crossings hypersurfaces, there are respectively Shiffman's conjecture and Griffiths-Lang's conjecture. Here we list the process of this problem: A. Complex analysis: (i) Constant targets: R. Nevanlinna[98] for n = k = 1; H. Cartan [20] for n = k > 1; E. I. Nochka [99], [100],[101] for n > k ~ 1; Shiffman's conjecture partially solved by Hu-Yang [71J; Griffiths-Lang's conjecture (open).
This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them. Blending techniques from "soft" and "hard" analysis, the book contains clear and beautiful proofs. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: "Grafakos's book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises." - Ken Ross, MAA Online
Can be used as a graduate text Contains many exercises Contains new results
A quadratic differential on aRiemann surface is locally represented by a ho lomorphic function element wh ich transforms like the square of a derivative under a conformal change of the parameter. More generally, one also allows for meromorphic function elements; however, in many considerations it is con venient to puncture the surface at the poles of the differential. One is then back at the holomorphic case. A quadratic differential defines, in a natural way, a field of line elements on the surface, with singularities at the critical points, i.e. the zeros and poles of the differential. The integral curves of this field are called the trajectories of the differential. A large part of this book is about the trajectory structure of quadratic differentials. There are of course local and global aspects to this structure. Be sides, there is the behaviour of an individual trajectory and the structure deter mined by entire subfamilies of trajectories. An Abelian or first order differential has an integral or primitive function is in general not single-valued. In the case of a quadratic on the surface, which differential, one first has to take the square root and then integrate. The local integrals are only determined up to their sign and arbitrary additive constants. However, it is this multivalued function which plays an important role in the theory; the trajectories are the images of the horizontals by single valued branches of its inverse."
S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous K hler manifolds.- S.G. Greenfield: Extendibility properties of real submanifolds of Cn.- W. Kaup: Holomorphische Abbildungen in Hyperbolische R ume.- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains.- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement sym triques.- S. Murakami: Plongements holomorphes de domaines sym triques.- E.M. Stein: The analogues of Fatous 's theorem and estimates for maximal functions.
A. Dynin: Pseudo-differential operators on Heisenberg groups.- A. Dynin: An index formula for elliptic boundary problems.- G.I. Eskin: General mixed boundary problems for elliptic differential equations.- B. Helffer: Hypoellipticite pour des operateurs differentiels sur des groupes de Lie nilpotents.- J.J. Kohn: Lectures on degenerate elliptic problems.- K. Taira: Conditions necessaires et suffisantes pour l'existence et l'unicite des solutions du probleme de la derivee oblique.- F. Treves: Boundary value problems for elliptic equations.
All modem introductions to complex analysis follow, more or less explicitly, the pattern laid down in Whittaker and Watson 75]. In "part I'' we find the foundational material, the basic definitions and theorems. In "part II" we find the examples and applications. Slowly we begin to understand why we read part I. Historically this is an anachronism. Pedagogically it is a disaster. Part II in fact predates part I, so clearly it can be taught first. Why should the student have to wade through hundreds of pages before finding out what the subject is good for? In teaching complex analysis this way, we risk more than just boredom. Beginning with a series of unmotivated definitions gives a misleading impression of complex analy sis in particular and of mathematics in general. The classical theory of analytic functions did not arise from the idle speculation of bored mathematicians on the possible conse quences of an arbitrary set of definitions; it was the natural, even inevitable, consequence of the practical need to answer questions about specific examples. In standard texts, after hundreds of pages of theorems about generic analytic functions with only the rational and trigonometric functions as examples, students inevitably begin to believe that the purpose of complex analysis is to produce more such theorems. We require introductory com plex analysis courses of our undergraduates and graduates because it is useful both within mathematics and beyond."
In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups. The focus is on the spectra and eigenspaces of convolution operators on these spaces, defined by matrix-valued measures. Among various spectral results, the L2-spectrum of such an operator is completely determined and as an application, the spectrum of a discrete Laplacian on a homogeneous graph is computed using this result. The contractivity properties of matrix convolution semigroups are studied and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions.
Vector?eldsonmanifoldsplaymajorrolesinmathematicsandothersciences. In particular, the Poincar' e-Hopf index theorem and its geometric count- part,the Gauss-Bonnettheorem, giveriseto the theoryof Chernclasses,key invariants of manifolds in geometry and topology. One has often to face problems where the underlying space is no more a manifold but a singular variety. Thus it is natural to ask what is the "good" notionofindexofavector?eld,andofChernclasses,ifthespaceacquiress- gularities.Thequestionwasexploredbyseveralauthorswithvariousanswers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph. Marseille Jean-Paul Brasselet Cuernavaca Jos' e Seade Tokyo Tatsuo Suwa September 2009 v Acknowledgements Parts of this monograph were written while the authors were staying at various institutions, such as Hokkaido University and Niigata University in Japan, CIRM, Universit' e de la Mediterran' ee and IML at Marseille, France, the Instituto de Matem' aticas of UNAM at Cuernavaca, Mexico, ICTP at Trieste, Italia, IMPA at Rio de Janeiro, and USP at S" ao Carlos in Brasil, to name a few, and we would like to thank them for their generous hospitality and support. Thanks are also due to people who helped us in many ways, in particular our co-authors of results quoted in the book: Marcelo Aguilar, Wolfgang Ebeling, Xavier G' omez-Mont, Sabir Gusein-Zade, LeDung " Tran ' g, Daniel Lehmann, David Massey, A.J. Parameswaran, Marcio Soares, Mihai Tibar, Alberto Verjovsky,andmanyother colleagueswho helped usin variousways.
Even the simplest singularities of planar curves, e.g. where the curve crosses itself, or where it forms a cusp, are best understood in terms of complex numbers. The full treatment uses techniques from algebra, algebraic geometry, complex analysis and topology and makes an attractive chapter of mathematics, which can be used as an introduction to any of these topics, or to singularity theory in higher dimensions. This book is designed as an introduction for graduate students and draws on the author's experience of teaching MSc courses; moreover, by synthesising different perspectives, he gives a novel view of the subject, and a number of new results.
Pseudoanalytic function theory generalizes and preserves many crucial features of complex analytic function theory. The Cauchy-Riemann system is replaced by a much more general first-order system with variable coefficients which turns out to be closely related to important equations of mathematical physics. This relation supplies powerful tools for studying and solving SchrAdinger, Dirac, Maxwell, Klein-Gordon and other equations with the aid of complex-analytic methods. The book is dedicated to these recent developments in pseudoanalytic function theory and their applications as well as to multidimensional generalizations. It is directed to undergraduates, graduate students and researchers interested in complex-analytic methods, solution techniques for equations of mathematical physics, partial and ordinary differential equations.
This volume grew out of a series of preprints which were written and circulated - tween 1993 and 1994. Around the same time, related work was done independently by Harder [40] and Laumon [62]. In writing this text based on a revised version of these preprints that were widely distributed in summer 1995, I ?nally did not p- sue the original plan to completely reorganize the original preprints. After the long delay, one of the reasons was that an overview of the results is now available in [115]. Instead I tried to improve the presentation modestly, in particular by adding cross-references wherever I felt this was necessary. In addition, Chaps. 11 and 12 and Sects. 5. 1, 5. 4, and 5. 5 were added; these were written in 1998. I willgivea moredetailedoverviewofthecontentofthedifferentchaptersbelow. Before that I should mention that the two main results are the proof of Ramanujan's conjecture for Siegel modular forms of genus 2 for forms which are not cuspidal representations associated with parabolic subgroups(CAP representations), and the study of the endoscopic lift for the group GSp(4). Both topics are formulated and proved in the ?rst ?ve chapters assuming the stabilization of the trace formula. All the remaining technical results, which are necessary to obtain the stabilized trace formula, are presented in the remaining chapters. Chapter 1 gathers results on the cohomology of Siegel modular threefolds that are used in later chapters, notably in Chap. 3. At the beginning of Chap.
This book could have been entitled "Analysis and Geometry." The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated, acenturyago, withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ] in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L 0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function."
The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson S- mation Formula. We ?rst prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for Type I groups. The generalization of the Poisson Summation Formula to non-abelian groups is the S- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. As examples for the application of the Trace F- mula we treat the Heisenberg group and the group SL (R). In the 2 2 former case the trace formula yields a decomposition of the L -space of the Heisenberg group modulo a lattice. In the case SL (R), the 2 trace formula is used to derive results like the Weil asymptotic law for hyperbolic surfaces and to provide the analytic continuation of the Selberg zeta function. We ?nally include a chapter on the app- cations of abstract Harmonic Analysis on the theory of wavelets. The present book is a text book for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up of the First Course in Harmonic Analysis, [9], or indep- dently, if the students have required a modest knowledge of Fourier Analysis already. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in [9].
Presents Real & Complex Analysis Together Using a Unified Approach A two-semester course in analysis at the advanced undergraduate or first-year graduate level Unlike other undergraduate-level texts, Real and Complex Analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA's 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book's website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks-one for real function theory and one for complex function theory.
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter. The enclosed CD-ROM contains an extensive literature database and a Maple package with comments and procedures of tools and methods explained in the book.
This volume is the first of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).
The first two chapters of this book are devoted to convexity in the classical sense, for functions of one and several real variables respectively. This gives a background for the study in the following chapters of related notions which occur in the theory of linear partial differential equations and complex analysis such as (pluri-)subharmonic functions, pseudoconvex sets, and sets which are convex for supports or singular supports with respect to a differential operator. In addition, the convexity conditions which are relevant for local or global existence of holomorphic differential equations are discussed.
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. In 1975, Voronin proved that any non-vanishing analytic function can be approximated uniformly by certain shifts of the Riemann zeta-function in the critical strip. This spectacular universality property has a strong impact on the zero-distribution: Riemann's hypothesis is true if and only if the Riemann zeta-function can approximate itself uniformly (in the sense of Voronin). Meanwhile universality is proved for a large zoo of Dirichlet series, and it is conjectured that all reasonable L-functions are universal. In these notes we prove universality for polynomial Euler products. Our approach follows mainly Bagchi's probabilistic method. We further discuss related topics as, e.g., almost periodicity, density estimates, Nevanlinna theory, and functional independence. |
You may like...
|