![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Vector?eldsonmanifoldsplaymajorrolesinmathematicsandothersciences. In particular, the Poincar' e-Hopf index theorem and its geometric count- part,the Gauss-Bonnettheorem, giveriseto the theoryof Chernclasses,key invariants of manifolds in geometry and topology. One has often to face problems where the underlying space is no more a manifold but a singular variety. Thus it is natural to ask what is the "good" notionofindexofavector?eld,andofChernclasses,ifthespaceacquiress- gularities.Thequestionwasexploredbyseveralauthorswithvariousanswers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph. Marseille Jean-Paul Brasselet Cuernavaca Jos' e Seade Tokyo Tatsuo Suwa September 2009 v Acknowledgements Parts of this monograph were written while the authors were staying at various institutions, such as Hokkaido University and Niigata University in Japan, CIRM, Universit' e de la Mediterran' ee and IML at Marseille, France, the Instituto de Matem' aticas of UNAM at Cuernavaca, Mexico, ICTP at Trieste, Italia, IMPA at Rio de Janeiro, and USP at S" ao Carlos in Brasil, to name a few, and we would like to thank them for their generous hospitality and support. Thanks are also due to people who helped us in many ways, in particular our co-authors of results quoted in the book: Marcelo Aguilar, Wolfgang Ebeling, Xavier G' omez-Mont, Sabir Gusein-Zade, LeDung " Tran ' g, Daniel Lehmann, David Massey, A.J. Parameswaran, Marcio Soares, Mihai Tibar, Alberto Verjovsky,andmanyother colleagueswho helped usin variousways.
Pseudoanalytic function theory generalizes and preserves many crucial features of complex analytic function theory. The Cauchy-Riemann system is replaced by a much more general first-order system with variable coefficients which turns out to be closely related to important equations of mathematical physics. This relation supplies powerful tools for studying and solving SchrAdinger, Dirac, Maxwell, Klein-Gordon and other equations with the aid of complex-analytic methods. The book is dedicated to these recent developments in pseudoanalytic function theory and their applications as well as to multidimensional generalizations. It is directed to undergraduates, graduate students and researchers interested in complex-analytic methods, solution techniques for equations of mathematical physics, partial and ordinary differential equations.
Presents Real & Complex Analysis Together Using a Unified Approach A two-semester course in analysis at the advanced undergraduate or first-year graduate level Unlike other undergraduate-level texts, Real and Complex Analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA's 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book's website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks-one for real function theory and one for complex function theory.
This volume grew out of a series of preprints which were written and circulated - tween 1993 and 1994. Around the same time, related work was done independently by Harder [40] and Laumon [62]. In writing this text based on a revised version of these preprints that were widely distributed in summer 1995, I ?nally did not p- sue the original plan to completely reorganize the original preprints. After the long delay, one of the reasons was that an overview of the results is now available in [115]. Instead I tried to improve the presentation modestly, in particular by adding cross-references wherever I felt this was necessary. In addition, Chaps. 11 and 12 and Sects. 5. 1, 5. 4, and 5. 5 were added; these were written in 1998. I willgivea moredetailedoverviewofthecontentofthedifferentchaptersbelow. Before that I should mention that the two main results are the proof of Ramanujan's conjecture for Siegel modular forms of genus 2 for forms which are not cuspidal representations associated with parabolic subgroups(CAP representations), and the study of the endoscopic lift for the group GSp(4). Both topics are formulated and proved in the ?rst ?ve chapters assuming the stabilization of the trace formula. All the remaining technical results, which are necessary to obtain the stabilized trace formula, are presented in the remaining chapters. Chapter 1 gathers results on the cohomology of Siegel modular threefolds that are used in later chapters, notably in Chap. 3. At the beginning of Chap.
This book could have been entitled "Analysis and Geometry." The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated, acenturyago, withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ] in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L 0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function."
The tread of this book is formed by two fundamental principles of Harmonic Analysis: the Plancherel Formula and the Poisson S- mation Formula. We ?rst prove both for locally compact abelian groups. For non-abelian groups we discuss the Plancherel Theorem in the general situation for Type I groups. The generalization of the Poisson Summation Formula to non-abelian groups is the S- berg Trace Formula, which we prove for arbitrary groups admitting uniform lattices. As examples for the application of the Trace F- mula we treat the Heisenberg group and the group SL (R). In the 2 2 former case the trace formula yields a decomposition of the L -space of the Heisenberg group modulo a lattice. In the case SL (R), the 2 trace formula is used to derive results like the Weil asymptotic law for hyperbolic surfaces and to provide the analytic continuation of the Selberg zeta function. We ?nally include a chapter on the app- cations of abstract Harmonic Analysis on the theory of wavelets. The present book is a text book for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up of the First Course in Harmonic Analysis, [9], or indep- dently, if the students have required a modest knowledge of Fourier Analysis already. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in [9].
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter. The enclosed CD-ROM contains an extensive literature database and a Maple package with comments and procedures of tools and methods explained in the book.
This volume is the first of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).
The first two chapters of this book are devoted to convexity in the classical sense, for functions of one and several real variables respectively. This gives a background for the study in the following chapters of related notions which occur in the theory of linear partial differential equations and complex analysis such as (pluri-)subharmonic functions, pseudoconvex sets, and sets which are convex for supports or singular supports with respect to a differential operator. In addition, the convexity conditions which are relevant for local or global existence of holomorphic differential equations are discussed.
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. In 1975, Voronin proved that any non-vanishing analytic function can be approximated uniformly by certain shifts of the Riemann zeta-function in the critical strip. This spectacular universality property has a strong impact on the zero-distribution: Riemann's hypothesis is true if and only if the Riemann zeta-function can approximate itself uniformly (in the sense of Voronin). Meanwhile universality is proved for a large zoo of Dirichlet series, and it is conjectured that all reasonable L-functions are universal. In these notes we prove universality for polynomial Euler products. Our approach follows mainly Bagchi's probabilistic method. We further discuss related topics as, e.g., almost periodicity, density estimates, Nevanlinna theory, and functional independence.
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. This first volume focuses on the analysis of real-valued functions of a real variable. Besides developing the basic theory it describes many applications, including a chapter on Fourier series. It also includes a Prologue in which the author introduces the axioms of set theory and uses them to construct the real number system. Volume II goes on to consider metric and topological spaces and functions of several variables. Volume III covers complex analysis and the theory of measure and integration.
Recent decades have seen profound changes in the way we understand complex analysis. This new work presents a much-needed modern treatment of the subject, incorporating the latest developments and providing a rigorous yet accessible introduction to the concepts and proofs of this fundamental branch of mathematics. With its thorough review of the prerequisites and well-balanced mix of theory and practice, this book will appeal both to readers interested in pursuing advanced topics as well as those wishing to explore the many applications of complex analysis to engineering and the physical sciences.
Here is the first part of a work that provides a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization. It offers an elementary and self-contained description of Jorgensen's theory with a complete proof. Through various informative illustrations, readers are naturally led to an intuitive, synthetic grasp of the theory, which clarifies how a very simple fuchsian group evolves into complicated Kleinian groups.
This conference allowed specialists in several complex variables to meet with specialists in potential theory to demonstrate the interface and interconnections between their two fields. The following topics were discussed: 1. Real and complex potential theory - capacity and approximation, basic properties of plurisubharmonic functions and methods to manipulate their singularities and study theory growth, Green functions, Chebyshev-like quadratures, electrostatic fields and potentials, and the propagation of smallness. 2. Complex dynamics - review of complex dynamics in one variable, Julia sets, Fatou sets, background in several variables, Henon maps, ergodicity use of potential theory and multifunctions. 3. Banach algebras and infinite dimensional holomorphy - analytic multifunctions, spectral theory, analytic functions on a Banach space, semigroups of holomorphic isometries, Pick interpolation on uniform algebras and von Neumann inequalities for operators on a Hilbert space.
* A comprehensive and systematic exposition of the properties of semiconcave functions and their various applications, particularly to optimal control problems, by leading experts in the field * A central role in the present work is reserved for the study of singularities * Graduate students and researchers in optimal control, the calculus of variations, and PDEs will find this book useful as a reference work on modern dynamic programming for nonlinear control systems
This volume deals with various topics around equivariant holomorphic maps of Hermitian symmetric domains and is intended for specialists in number theory and algebraic geometry. In particular, it contains a comprehensive exposition of mixed automorphic forms that has never yet appeared in book form. The main goal is to explore connections among complex torus bundles, mixed automorphic forms, and Jacobi forms associated to an equivariant holomorphic map. Both number-theoretic and algebro-geometric aspects of such connections and related topics are discussed.
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, "Complex Analysis" will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which "Complex Analysis" is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
This book describes the basic theory of hypercomplex-analytic automorphic forms and functions for arithmetic subgroups of the Vahlen group in higher dimensional spaces. Hypercomplex analyticity generalizes the concept of complex analyticity in the sense of considering null-solutions to higher dimensional Cauchy-Riemann type systems. Vector- and Clifford algebra-valued Eisenstein and Poincar series are constructed within this framework and a detailed description of their analytic and number theoretical properties is provided. In particular, explicit relationships to generalized variants of the Riemann zeta function and Dirichlet L-series are established and a concept of hypercomplex multiplication of lattices is introduced. Applications to the theory of Hilbert spaces with reproducing kernels, to partial differential equations and index theory on some conformal manifolds are also described.
This work provides a systematic examination of derivatives and integrals of multivariable functions. The approach taken here is similar to that of the author 's previous text, "Continuous Functions of Vector Variables": specifically, elementary results from single-variable calculus are extended to functions in several-variable Euclidean space. Topics encompass differentiability, partial derivatives, directional derivatives and the gradient; curves, surfaces, and vector fields; the inverse and implicit function theorems; integrability and properties of integrals; and the theorems of Fubini, Stokes, and Gauss. Prerequisites include background in linear algebra, one-variable calculus, and some acquaintance with continuous functions and the topology of the real line. Written in a definition-theorem-proof format, the book is replete with historical comments, questions, and discussions about strategy, difficulties, and alternate paths. "Derivatives and Integrals of Multivariable Functions" is a rigorous introduction to multivariable calculus that will help students build a foundation for further explorations in analysis and differential geometry.
Complex analysis is one of the most attractive of all the core topics in an undergraduate mathematics course. Its importance to applications means that it can be studied both from a very pure perspective and a very applied perspective. This book takes account of these varying needs and backgrounds and provides a self-study text for students in mathematics, science and engineering. Beginning with a summary of what the student needs to know at the outset, it covers all the topics likely to feature in a first course in the subject, including: complex numbers differentiation integration Cauchy's theorem and its consequences Laurent series and the residue theorem applications of contour integration conformal mappings and harmonic functions A brief final chapter explains the Riemann hypothesis, the most celebrated of all the unsolved problems in mathematics, and ends with a short descriptive account of iteration, Julia sets and the Mandelbrot set. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided.
This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9).The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.
From the reviews: "Theory of Stein Spaces provides a rich variety of methods, results, and motivations - a book with masterful mathematical care and judgement. It is a pleasure to have this fundamental material now readily accessible to any serious mathematician."J. Eells in Bulletin of the London Mathematical Society (1980) "Written by two mathematicians who played a crucial role in the development of the modern theory of several complex variables, this is an important book."J.B. Cooper in Internationale Mathematische Nachrichten (1979)
In recent years, algorithmic graph theory has become increasingly important as a link between discrete mathematics and theoretical computer science. This textbook introduces students of mathematics and computer science to the interrelated fields of graphs theory, algorithms and complexity.
The space Q p consists of all holomorphic functions f on the unit disk for which the L^2 area integrals of its derivative against the p-th power of the Green function of the unit disk are uniformly bounded in the variable that survives the integration. It turns out that Q 1 coincides with BMOA, while, for p>1, Q p are just the Bloch space. For p/in (0,1) the Q p furnish an increasing sequence of spaces, each invariant under conformal mappings of the unit disk onto itself, which interpolate between the Dirichlet space and BMOA. This monograph covers a number of important aspects in complex, functional and harmonic analysis. The primary focus is Q p, p/in (0,1), and their equivalent characterizations. Based on the up-to-date results obtained by experts in their respective fields, each of the eight chapters unfolds from the basics to the more complex. The exposition here is rapid-paced and efficient, with proofs and examples.
Over seventy years ago, Richard Bellman coined the term "the curse of dimensionality" to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation-that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book's companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques. |
You may like...
|