![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
This volume is a collection of manscripts mainly originating from talks and lectures given at the Workshop on Recent Trends in Complex Methods for Par tial Differential Equations held from July 6 to 10, 1998 at the Middle East Technical University in Ankara, Turkey, sponsored by The Scientific and Tech nical Research Council of Turkey and the Middle East Technical University. This workshop is a continuation oftwo workshops from 1988 and 1993 at the In ternational Centre for Theoretical Physics in Trieste, Italy entitled Functional analytic Methods in Complex Analysis and Applications to Partial Differential Equations. Since classical complex analysis of one and several variables has a long tra dition it is of high level. But most of its basic problems are solved nowadays so that within the last few decades it has lost more and more attention. The area of complex and functional analytic methods in partial differential equations, however, is still a growing and flourishing field, in particular as these methods are not only applied. Whithin the framework of holomorphic functions but are also combined with properties of generalized analytic functions. This can be seen by the many books which recently were published in this field and also by the proceedings in this ISAAC series and the ISAAC congresses and workshops."
The purpose of these lecture notes is to provide an introduction
to the theory of complex Monge-Ampere operators (definition,
regularity issues, geometric properties of solutions,
approximation) on compact Kahler manifolds (with or without
boundary). Each chapter can be read independently and is based on a series of lectures byR. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis."
This book deals with linear functional differential equations and operator theory methods for their investigation. The main topics are: the equivalence of the input-output stability of the equation "L"x = &mathsf; and the invertibility of the operator "L" in the class of casual operators; the equivalence of input-output and exponential stability; the equivalence of the dichotomy of solutions for the homogeneous equation "L"x = 0 and the invertibility of the operator "L"; the properties of Green's function; the independence of the stability of an equation from the norm on the space of solutions; shift invariant functional differential equations in Banach space; the possibility of the reduction of an equation of neutral type to an equation of retarded type; special full subalgebras of integral and difference operators, and operators with unbounded memory; and the analogue of Fredholm's alternative for operators with almost periodic coefficients where one-sided invertibility implies two-sided invertibility. Audience: This monograph will be of interest to students and researchers working in functional differential equations and operator theory and is recommended for graduate level courses.
Bringing together two fundamental texts from Frederic Pham's research on singular integrals, the first part of this book focuses on topological and geometrical aspects while the second explains the analytic approach. Using notions developed by J. Leray in the calculus of residues in several variables and R. Thom's isotopy theorems, Frederic Pham's foundational study of the singularities of integrals lies at the interface between analysis and algebraic geometry, culminating in the Picard-Lefschetz formulae. These mathematical structures, enriched by the work of Nilsson, are then approached using methods from the theory of differential equations and generalized from the point of view of hyperfunction theory and microlocal analysis. Providing a 'must-have' introduction to the singularities of integrals, a number of supplementary references also offer a convenient guide to the subjects covered. This book will appeal to both mathematicians and physicists with an interest in the area of singularities of integrals. Frederic Pham, now retired, was Professor at the University of Nice. He has published several educational and research texts. His recent work concerns semi-classical analysis and resurgent functions."
This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.
The first contribution describes basic concepts, facts and problems of the modern theory of entire functions of several complex variables. The second contribution deals with analogies of basic Nevanlinna's theorems about the distribution of values in the multidimensional case and various applications. The third contribution is devoted to invariant metrics and volumes and their applications in problems of function theory of several variables. The fourth contribution touches upon various results concerning the rigidity of holomorphic mappings of complex spaces beginnning with classical Liouville's and Picard's theorems. Contribution five presents results concerning extension of holomorphic mappings to the boundaries of domains, and results about correspondence of boundaries and equivalence of domains with respect to biholomorphic mappings. Contribution six dwells on the problem of biholomorphic equivalence of manifolds in this differential geometric aspect. The last contribution reviews applications of multidimensional complex geometry in modern physical theories - supergravitation and supergauge fields. This volume will be useful to complex analysts and physicists. It is rounded off by an extensive bibliography.
Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.
This volume of the EMS contains four survey articles on analytic spaces. They are excellent introductions to each respective area. Starting from basic principles in several complex variables each article stretches out to current trends in research. Graduate students and researchers will find a useful addition in the extensive bibliography at the end of each article.
One service mathematics has rendered the 'Et moi, ..., si j'avait Sil comment en revenir, je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences_ Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science .. :; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function."
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2* . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o
The present monograph is devoted to the complex theory of differential equations. Not yet a handbook, neither a simple collection of articles, the book is a first attempt to present a more or less detailed exposition of a young but promising branch of mathematics, that is, the complex theory of partial differential equations. Let us try to describe the framework of this theory. First, simple examples show that solutions of differential equations are, as a rule, ramifying analytic functions. and, hence, are not regular near points of their ramification. Second, bearing in mind these important properties of solutions, we shall try to describe the method solving our problem. Surely, one has first to consider differential equations with constant coefficients. The apparatus solving such problems is well-known in the real the ory of differential equations: this is the Fourier transformation. Un fortunately, such a transformation had not yet been constructed for complex-analytic functions and the authors had to construct by them selves. This transformation is, of course, the key notion of the whole theory."
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.
First works related to the topics covered in this book belong to J. Delsarte and B. M. Le vitan and appeared since 1938. In these works, the families of operators that generalize usual translation operators were investigated and the corresponding harmonic analysis was constructed. Later, starting from 1950, it was noticed that, in such constructions, an important role is played by the fact that the kernels of the corresponding convolutions of functions are nonnegative and by the properties of the normed algebras generated by these convolutions. That was the way the notion of hypercomplex system with continu ous basis appeared. A hypercomplex system is a normed algebra of functions on a locally compact space Q-the "basis" of this hypercomplex system. Later, similar objects, hypergroups, were introduced, which have complex-valued measures on Q as elements and convolution defined to be essentially the convolution of functionals and dual to the original convolution (if measures are regarded as functionals on the space of continuous functions on Q). However, until 1991, the time when this book was written in Russian, there were no monographs containing fundamentals of the theory (with an exception of a short section in the book by Yu. M. Berezansky and Yu. G. Kondratiev BeKo]). The authors wanted to give an introduction to the theory and cover the most important subsequent results and examples."
Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B. C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D. M. Bressoud), theta functions in complex analysis (H. M. Farkas), representation functions in additive number theory (M. B. Nathanson), and mock theta functions, ranks, and Maass forms (K. Ono), and elliptic functions (M. Waldschmidt).
This book is the first monograph in the field of uniqueness theory of meromorphic functions dealing with conditions under which there is the unique function satisfying given hypotheses. Developed by R. Nevanlinna, a Finnish mathematician, early in the 1920's, research in the field has developed rapidly over the past three decades with a great deal of fruitful results. This book systematically summarizes the most important results in the field, including many of the authors' own previously unpublished results. In addition, useful skills and simple proofs are introduced. This book is suitable for higher level and graduate students who have a basic grounding in complex analysis, but will also appeal to researchers in mathematics.
This book is devoted to some results from the classical Point Set Theory and their applications to certain problems in mathematical analysis of the real line. Notice that various topics from this theory are presented in several books and surveys. From among the most important works devoted to Point Set Theory, let us first of all mention the excellent book by Oxtoby [83] in which a deep analogy between measure and category is discussed in detail. Further, an interesting general approach to problems concerning measure and category is developed in the well-known monograph by Morgan [79] where a fundamental concept of a category base is introduced and investigated. We also wish to mention that the monograph by Cichon, W";glorz and the author [19] has recently been published. In that book, certain classes of subsets of the real line are studied and various cardinal valued functions (characteristics) closely connected with those classes are investigated. Obviously, the IT-ideal of all Lebesgue measure zero subsets of the real line and the IT-ideal of all first category subsets of the same line are extensively studied in [19], and several relatively new results concerning this topic are presented. Finally, it is reasonable to notice here that some special sets of points, the so-called singular spaces, are considered in the classi
The book is an authoritative and up-to-date introduction to the field of analysis and potential theory dealing with the distribution zeros of classical systems of polynomials such as orthogonal polynomials, Chebyshev, Fekete and Bieberbach polynomials, best or near-best approximating polynomials on compact sets and on the real line. The main feature of the book is the combination of potential theory with conformal invariants, such as module of a family of curves and harmonic measure, to derive discrepancy estimates for signed measures if bounds for their logarithmic potentials or energy integrals are known a priori.
The asymptotic theory deals with the problern of determining the behaviour of a function in a neighborhood of its singular point. The function is replaced by another known function ( named the asymptotic function) close (in a sense) to the function under consideration. Many problems of mathematics, physics, and other divisions of natural sci ence bring out the necessity of solving such problems. At the present time asymptotic theory has become an important and independent branch of mathematical analysis. The present consideration is mainly based on the theory of asymp totic spaces. Each asymptotic space is a collection of asymptotics united by an associated real function which determines their growth near the given point and (perhaps) some other analytic properties. The main contents of this book is the asymptotic theory of ordinary linear differential equations with variable coefficients. The equations with power order growth coefficients are considered in detail. As the application of the theory of differential asymptotic fields, we also consider the following asymptotic problems: the behaviour of explicit and implicit functions, improper integrals, integrals dependent on a large parameter, linear differential and difference equations, etc .. The obtained results have an independent meaning. The reader is assumed to be familiar with a comprehensive course of the mathematical analysis studied, for instance at mathematical departments of universities. Further necessary information is given in this book in summarized form with proofs of the main aspects."
This volume will be of great appeal to both advanced students and researchers. For the former, it serves as an effective introduction to three interrelated subjects of analysis: semigroups, Markov processes and elliptic boundary value problems. For the latter, it provides a new method for the analysis of Markov processes, a powerful method clearly capable of extensive further development.
The 3rd International ISAAC Congress took place from August 20 to 25, 2001 in Berlin, Germany, supported by the German Research Foundation (DFG), the city of Berlin through Investitionsbank Berlin and the Freie Universitiit Berlin. 10 ISAAC Awards were presented to young researchers in analysis its applications and computation from all over the world on the basis of financial support from Siemens, Daimler Crysler, Motorola and the Berlin Mathematical Society and book gifts from Birkhauser Verlag, Elsevier, Kluwer Academic Publisher, Springer Verlag and World Scientific. The ISAAC is grateful to all these institutions, firms and publishers for their support. Due to the support from DFG and from Investitions bank Berlin many of the 362 registrated participants could be financially supported. Unfortunately the financial supports were granted too late to reach more people from former SU as the procedere for visa is still more than cumbersome and embassies are not at all flexible. Hence, a big part of the financial support could not be used and had to be returned. The 10 plenary lectures were 1. Antoniou, 1. Prigogine (Intern. Solvay Inst. Phys. Chem., Brussels): Irreversibility and the probabilistic description of unstable evolutions beyond the Hilbert space framework (read by 1. Antoniou), N.S. Bakhvalov, M.E. Eglit (Math. Mech. Dept., Lomonosov State Univ."
We study the boundary behaviour of a conformal map of the unit disk onto an arbitrary simply connected plane domain. A principal aim of the theory is to obtain a one-to-one correspondence between analytic properties of the function and geometrie properties of the domain. In the classical applications of conformal mapping, the domain is bounded by a piecewise smooth curve. In many recent applications however, the domain has a very bad boundary. It may have nowhere a tangent as is the case for Julia sets. Then the conformal map has many unexpected properties, for instance almost all the boundary is mapped onto almost nothing and vice versa. The book is meant for two groups of users. (1) Graduate students and others who, at various levels, want to learn about conformal mapping. Most sections contain exercises to test the understand ing. They tend to be fairly simple and only a few contain new material. Pre requisites are general real and complex analyis including the basic facts about conformal mapping (e.g. AhI66a). (2) Non-experts who want to get an idea of a particular aspect of confor mal mapping in order to find something useful for their work. Most chapters therefore begin with an overview that states some key results avoiding tech nicalities. The book is not meant as an exhaustive survey of conformal mapping. Several important aspects had to be omitted, e.g. numerical methods (see e.g."
Analytic Extension is a mysteriously beautiful property of analytic functions. With this point of view in mind the related survey papers were gathered from various fields in analysis such as integral transforms, reproducing kernels, operator inequalities, Cauchy transform, partial differential equations, inverse problems, Riemann surfaces, Euler-Maclaurin summation formulas, several complex variables, scattering theory, sampling theory, and analytic number theory, to name a few. Audience: Researchers and graduate students in complex analysis, partial differential equations, analytic number theory, operator theory and inverse problems. |
![]() ![]() You may like...
Photochemistry - Volume 32
William M. Horspool, Norman S. Allen, …
Hardcover
R10,527
Discovery Miles 105 270
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,956
Discovery Miles 59 560
Self-Production of Supramolecular…
Gail R. Fleischaker, S. Colonna, …
Hardcover
R4,470
Discovery Miles 44 700
|