Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter. The enclosed CD-ROM contains an extensive literature database and a Maple package with comments and procedures of tools and methods explained in the book.
Here is the first part of a work that provides a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization. It offers an elementary and self-contained description of Jorgensen's theory with a complete proof. Through various informative illustrations, readers are naturally led to an intuitive, synthetic grasp of the theory, which clarifies how a very simple fuchsian group evolves into complicated Kleinian groups.
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. In 1975, Voronin proved that any non-vanishing analytic function can be approximated uniformly by certain shifts of the Riemann zeta-function in the critical strip. This spectacular universality property has a strong impact on the zero-distribution: Riemann's hypothesis is true if and only if the Riemann zeta-function can approximate itself uniformly (in the sense of Voronin). Meanwhile universality is proved for a large zoo of Dirichlet series, and it is conjectured that all reasonable L-functions are universal. In these notes we prove universality for polynomial Euler products. Our approach follows mainly Bagchi's probabilistic method. We further discuss related topics as, e.g., almost periodicity, density estimates, Nevanlinna theory, and functional independence.
The first two chapters of this book are devoted to convexity in the classical sense, for functions of one and several real variables respectively. This gives a background for the study in the following chapters of related notions which occur in the theory of linear partial differential equations and complex analysis such as (pluri-)subharmonic functions, pseudoconvex sets, and sets which are convex for supports or singular supports with respect to a differential operator. In addition, the convexity conditions which are relevant for local or global existence of holomorphic differential equations are discussed.
This volume is the first of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).
The second in a series of three volumes surveying the theory of theta functions, this volume gives emphasis to the special properties of the theta functions associated with compact Riemann surfaces and how they lead to solutions of the Korteweg-de-Vries equations as well as other non-linear differential equations of mathematical physics. This book presents an explicit elementary construction of hyperelliptic Jacobian varieties and is a self-contained introduction to the theory of the Jacobians. It also ties together nineteenth-century discoveries due to Jacobi, Neumann, and Frobenius with recent discoveries of Gelfand, McKean, Moser, John Fay, and others. A definitive body of information and research on the subject of theta functions, this volume will be a useful addition to the individual and mathematics research libraries.
The author uses modern methods from computational group theory and representation theory to treat this classical topic of function theory. He provides classifications of all automorphism groups up to genus 48. The book also classifies the ordinary characters for several groups, arising from the action of automorphisms on the space of holomorphic abelian differentials of a compact Reimann surface. This book is suitable for graduate students and researchers in group theory, representation theory, complex analysis and computer algebra.
This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9).The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.
The contributions in this major work focus on a central area of mathematics with strong ties to partial differential equations, algebraic geometry, number theory, and differential geometry. The 1995-96 MSRI program on Several Complex Variables emphasized these interactions and concentrated on current developments and problems that capitalize on this interplay of ideas and techniques. This collection provides a remarkably complete picture of the status of research in these overlapping areas and a basis for significant continued contributions from researchers. Several of the articles are expository or have extensive expository sections, making this an excellent introduction for students on the use of techniques from these other areas in several complex variables. This volume comprises a representative sample of some of the best work recently done in Several Complex Variables.
This is a comprehensive discussion of complexity as it arises in physical, chemical and biological systems, as well as in mathematical models of nature. The aim of this book is to illustrate the ways in which complexity manifests itself and to introduce a sequence of increasingly sharp mathematical methods for the classification of complex behavior. This book will be of interest to graduate students and researchers in physics (nonlinear dynamics, fluid dynamics, solid-state, cellular automata, stochastic processes, statistical mechanics and thermodynamics), mathematics (dynamical systems, ergodic and probability theory), information and computer science (coding, information theory and algorithmic complexity), electrical engineering and theoretical biology.
* A comprehensive and systematic exposition of the properties of semiconcave functions and their various applications, particularly to optimal control problems, by leading experts in the field * A central role in the present work is reserved for the study of singularities * Graduate students and researchers in optimal control, the calculus of variations, and PDEs will find this book useful as a reference work on modern dynamic programming for nonlinear control systems
In this book, Dr. Smithies analyzes the process through which Cauchy created the basic structure of complex analysis, describing first the eighteenth century background before proceeding to examine the stages of Cauchy's own work, culminating in the proof of the residue theorem and his work on expansions in power series. Smithies describes how Cauchy overcame difficulties including false starts and contradictions brought about by over-ambitious assumptions, as well as the improvements that came about as the subject developed in Cauchy's hands. Controversies associated with the birth of complex function theory are described in detail. Throughout, new light is thrown on Cauchy's thinking during this watershed period. This book is the first to make use of the whole spectrum of available original sources and will be recognized as the authoritative work on the creation of complex function theory.
This volume deals with various topics around equivariant holomorphic maps of Hermitian symmetric domains and is intended for specialists in number theory and algebraic geometry. In particular, it contains a comprehensive exposition of mixed automorphic forms that has never yet appeared in book form. The main goal is to explore connections among complex torus bundles, mixed automorphic forms, and Jacobi forms associated to an equivariant holomorphic map. Both number-theoretic and algebro-geometric aspects of such connections and related topics are discussed.
This book shows how operator theory interacts with function theory in one and several variables. The authors develop the theory in detail, leading the reader to the cutting edge of contemporary research. It starts with a treatment of the theory of bounded holomorphic functions on the unit disc. Model theory and the network realization formula are used to solve Nevanlinna-Pick interpolation problems, and the same techniques are shown to work on the bidisc, the symmetrized bidisc, and other domains. The techniques are powerful enough to prove the Julia-Caratheodory theorem on the bidisc, Lempert's theorem on invariant metrics in convex domains, the Oka extension theorem, and to generalize Loewner's matrix monotonicity results to several variables. In Part II, the book gives an introduction to non-commutative function theory, and shows how model theory and the network realization formula can be used to understand functions of non-commuting matrices.
The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.
This book describes the basic theory of hypercomplex-analytic automorphic forms and functions for arithmetic subgroups of the Vahlen group in higher dimensional spaces. Hypercomplex analyticity generalizes the concept of complex analyticity in the sense of considering null-solutions to higher dimensional Cauchy-Riemann type systems. Vector- and Clifford algebra-valued Eisenstein and Poincar series are constructed within this framework and a detailed description of their analytic and number theoretical properties is provided. In particular, explicit relationships to generalized variants of the Riemann zeta function and Dirichlet L-series are established and a concept of hypercomplex multiplication of lattices is introduced. Applications to the theory of Hilbert spaces with reproducing kernels, to partial differential equations and index theory on some conformal manifolds are also described.
From the reviews: "Theory of Stein Spaces provides a rich variety of methods, results, and motivations - a book with masterful mathematical care and judgement. It is a pleasure to have this fundamental material now readily accessible to any serious mathematician."J. Eells in Bulletin of the London Mathematical Society (1980) "Written by two mathematicians who played a crucial role in the development of the modern theory of several complex variables, this is an important book."J.B. Cooper in Internationale Mathematische Nachrichten (1979)
This work provides a systematic examination of derivatives and integrals of multivariable functions. The approach taken here is similar to that of the author 's previous text, "Continuous Functions of Vector Variables": specifically, elementary results from single-variable calculus are extended to functions in several-variable Euclidean space. Topics encompass differentiability, partial derivatives, directional derivatives and the gradient; curves, surfaces, and vector fields; the inverse and implicit function theorems; integrability and properties of integrals; and the theorems of Fubini, Stokes, and Gauss. Prerequisites include background in linear algebra, one-variable calculus, and some acquaintance with continuous functions and the topology of the real line. Written in a definition-theorem-proof format, the book is replete with historical comments, questions, and discussions about strategy, difficulties, and alternate paths. "Derivatives and Integrals of Multivariable Functions" is a rigorous introduction to multivariable calculus that will help students build a foundation for further explorations in analysis and differential geometry.
Complex analysis is one of the most attractive of all the core topics in an undergraduate mathematics course. Its importance to applications means that it can be studied both from a very pure perspective and a very applied perspective. This book takes account of these varying needs and backgrounds and provides a self-study text for students in mathematics, science and engineering. Beginning with a summary of what the student needs to know at the outset, it covers all the topics likely to feature in a first course in the subject, including: complex numbers differentiation integration Cauchy's theorem and its consequences Laurent series and the residue theorem applications of contour integration conformal mappings and harmonic functions A brief final chapter explains the Riemann hypothesis, the most celebrated of all the unsolved problems in mathematics, and ends with a short descriptive account of iteration, Julia sets and the Mandelbrot set. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided.
Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, harmonic measure, Green's functions, potentials and capacity. This is an introduction to the subject suitable for beginning graduate students, concentrating on the important case of two dimensions. This permits a simpler treatment than other books, yet is still sufficient for a wide range of applications to complex analysis; these include Picard's theorem, the Phragmen-Lindeloef principle, the Koebe one-quarter mapping theorem and a sharp quantitative form of Runge's theorem. In addition there is a chapter on connections with functional analysis and dynamical systems, which shows how the theory can be applied to other parts of mathematics, and gives a flavour of some recent research. Exercises are provided throughout, enabling the book to be used with advanced courses on complex analysis or potential theory.
Ransford provides an introduction to the subject, concentrating on the important case of two dimensions, and emphasizing its links with complex analysis. This is reflected in the large number of applications, which include Picard's theorem, the Phragmén-Lindelöf principle, the Radó-Stout theorem, Lindelöf's theory of asymptotic values, the Riemann mapping theorem (including continuity at the boundary), the Koebe one-quarter theorem, Hilbert's lemniscate theorem, and the sharp quantitative form of Runge's theorem. In addition, there is a chapter on connections with functional analysis and dynamical systems, which shows how the theory can be applied to other parts of mathematics and gives a flavor of some recent research in the area.
This is a modern introduction to the analytic techniques used in the investigation of zeta-function. Riemann introduced this function in connection with his study of prime numbers, and from this has developed the subject of analytic number theory. Since then, many other classes of "zeta-function" have been introduced and they are now some of the most intensively studied objects in number theory. Professor Patterson has emphasized central ideas of broad application, avoiding technical results and the customary function-theoretic approach.
In recent years, algorithmic graph theory has become increasingly important as a link between discrete mathematics and theoretical computer science. This textbook introduces students of mathematics and computer science to the interrelated fields of graphs theory, algorithms and complexity.
This monograph provides an introduction and a survey of recent results in potential theory with respect to the Laplace-Beltrami operator D in several complex variables, with special emphasis on the unit ball in Cn. Topics covered include Poisson-Szegoe integrals on the ball, the Green's function for D and the Riesz decomposition theorem for invariant subharmonic functions. The extension to the ball of the classical Fatou theorem on non-tangible limits of Poisson integrals, and Littlewood's theorem on the existence of radial limits of subharmonic functions are covered in detail. The monograph also contains recent results on admissible and tangential boundary limits of Green potentials, and Lp inequalities for the invariant gradient of Green potentials. Applications of some of the results to Hp spaces, and weighted Bergman and Dirichlet spaces of invariant harmonic functions are included. The notes are self-contained, and should be accessible to anyone with some basic knowledge of several complex variables.
The space Q p consists of all holomorphic functions f on the unit disk for which the L^2 area integrals of its derivative against the p-th power of the Green function of the unit disk are uniformly bounded in the variable that survives the integration. It turns out that Q 1 coincides with BMOA, while, for p>1, Q p are just the Bloch space. For p/in (0,1) the Q p furnish an increasing sequence of spaces, each invariant under conformal mappings of the unit disk onto itself, which interpolate between the Dirichlet space and BMOA. This monograph covers a number of important aspects in complex, functional and harmonic analysis. The primary focus is Q p, p/in (0,1), and their equivalent characterizations. Based on the up-to-date results obtained by experts in their respective fields, each of the eight chapters unfolds from the basics to the more complex. The exposition here is rapid-paced and efficient, with proofs and examples. |
You may like...
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R864
Discovery Miles 8 640
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,891
Discovery Miles 18 910
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,507
Discovery Miles 45 070
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R896
Discovery Miles 8 960
Fundamentals of Complex Analysis with…
Edward Saff, Arthur Snider
Paperback
R2,190
Discovery Miles 21 900
|