![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties. The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject. Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study.
From the Preface (K. Chandrasekharan, 1966): "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL, who is rising seventy.In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time."Volume I includes Siegel's papers written between 1921 and 1937.
This book contains the lectures presented at a conference held at Princeton University in May 1991 in honor of Elias M. Stein's sixtieth birthday. The lectures deal with Fourier analysis and its applications. The contributors to the volume are W. Beckner, A. Boggess, J. Bourgain, A. Carbery, M. Christ, R. R. Coifman, S. Dobyinsky, C. Fefferman, R. Fefferman, Y. Han, D. Jerison, P. W. Jones, C. Kenig, Y. Meyer, A. Nagel, D. H. Phong, J. Vance, S. Wainger, D. Watson, G. Weiss, V. Wickerhauser, and T. H. Wolff. The topics of the lectures are: conformally invariant inequalities, oscillatory integrals, analytic hypoellipticity, wavelets, the work of E. M. Stein, elliptic non-smooth PDE, nodal sets of eigenfunctions, removable sets for Sobolev spaces in the plane, nonlinear dispersive equations, bilinear operators and renormalization, holomorphic functions on wedges, singular Radon and related transforms, Hilbert transforms and maximal functions on curves, Besov and related function spaces on spaces of homogeneous type, and counterexamples with harmonic gradients in Euclidean space. Originally published in 1995. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Formal verification increasingly has become recognized as an answer to the problem of how to create ever more complex control systems, which nonetheless are required to behave reliably. To be acceptable in an industrial setting, formal verification must be highly algorithmic; to cope with design complexity, it must support a top-down design methodology that leads from an abstract design to its detailed implementation. That combination of requirements points directly to the widely recognized solution of automata-theoretic verification, on account of its expressiveness, computational complexity, and perhaps general utility as well. This book develops the theory of automata-theoretic verification from its foundations, with a focus on algorithms and heuristics to reduce the computational complexity of analysis. It is suitable as a text for a one-or two-semester graduate course, and is recommended reading for anyone planning to use a verification tool, such as COSPAN or SMV. An extensive bibliography that points to the most recent sources, and extensive discussions of methodology and comparisons with other techniques, make this a useful resource for research or verification tool development, as well. Originally published in 1995. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.
This book contains a history of real and complex analysis in the nineteenth century, from the work of Lagrange and Fourier to the origins of set theory and the modern foundations of analysis. It studies the works of many contributors including Gauss, Cauchy, Riemann, and Weierstrass. This book is unique owing to the treatment of real and complex analysis as overlapping, inter-related subjects, in keeping with how they were seen at the time. It is suitable as a course in the history of mathematics for students who have studied an introductory course in analysis, and will enrich any course in undergraduate real or complex analysis.
The book describes many specific classes of Banach algebras, including function algebras, group algebras, algebras of operators, C*=algebras, and radical Banach algebras; it is a compendium of results on these examples. The subject interweaves algebras, functional analysis, and complex analysis, and has a dash of set theory and logic; the background in all these areas is fully explained.
This volume originated in talks given in Cortona at the conference "Geometric aspects of harmonic analysis" held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables. The work is addressed to researchers in the field.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfangen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen fur die historische wie auch die disziplingeschichtliche Forschung zur Verfugung, die jeweils im historischen Kontext betrachtet werden mussen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. This first volume focuses on the analysis of real-valued functions of a real variable. Besides developing the basic theory it describes many applications, including a chapter on Fourier series. It also includes a Prologue in which the author introduces the axioms of set theory and uses them to construct the real number system. Volume II goes on to consider metric and topological spaces and functions of several variables. Volume III covers complex analysis and the theory of measure and integration.
Indocti discant, et ament meminisse periti 1. Die Idee der Riemannschen Flache wird in der Funktionentheorie mehrerer komplexer Veranderlichen erst seit Beginn der 50er Jahre konsequent verwendet. Wie in der Funktionentheorie einer Verander- lichen muB man die Gebilde untersuchen, die durch groBtmogliche analytische Fortsetzung von holomorphen Funktionen entstehen. Die gleichen Griinde wie in der klassischen Funktionentheorie machen es notwendig, die Verzweigungspunkte hinzuzunehmen. Das fiihrte jedoch auf begriffiiche Schwierigkeiten, die 1933 H. Behnke und P. Thullen in ihrem Ergebnisbericht sogar veranlaBten, diese Punkte vorerst von der Betrachtung auszuschlieBen. Eine zufriedenstellende Definition des Ver- zweigungsbegriffs wurde erst 1951 von H. Behnke und K. Stein (Math. Ann. 124) gegeben. Die von ihnen eingefiihrten komplex n Riiume um- fassen insbesondere die analytischen Gebilde holomorpher Funktiollen mehrerer Veranderlicher, d. h. die hOherdimensionalen Riemannschen Flachen. Dabei stellte sich heraus, daB diese Riemannschen Gebilde - anders als in der klassischen Funktionentheorie - Punkte ohne lokale Uniformisierende besitzen konnen. Solche Punkte wurden fort an singu- lare Punkte genannt.
F. Lazzeri: Analytic singularities.- V. Po naru: Lectures of the singularities of C mappings.- A. Tognoli: About the set of non coherence of a real analytic variety. Pathology and imbedding problems for real analytic spaces.
This introduction to complex variable methods begins by carefully defining complex numbers and analytic functions, and proceeds to give accounts of complex integration, Taylor series, singularities, residues and mappings. Both algebraic and geometric tools are employed to provide the greatest understanding, with many diagrams illustrating the concepts introduced. The emphasis is laid on understanding the use of methods, rather than on rigorous proofs. Throughout the text, many of the important theoretical results in complex function theory are followed by relevant and vivid examples in physical sciences. This second edition now contains 350 stimulating exercises of high quality, with solutions given to many of them. Material has been updated and additional proofs on some of the important theorems in complex function theory are now included, e.g. the Weierstrass-Casorati theorem. The book is highly suitable for students wishing to learn the elements of complex analysis in an applied context.
A sequel to Lectures on Riemann Surfaces (Mathematical Notes, 1966), this volume continues the discussion of the dimensions of spaces of holomorphic cross-sections of complex line bundles over compact Riemann surfaces. Whereas the earlier treatment was limited to results obtainable chiefly by one-dimensional methods, the more detailed analysis presented here requires the use of various properties of Jacobi varieties and of symmetric products of Riemann surfaces, and so serves as a further introduction to these topics as well. The first chapter consists of a rather explicit description of a canonical basis for the Abelian differentials on a marked Riemann surface, and of the description of the canonical meromorphic differentials and the prime function of a marked Riemann surface. Chapter 2 treats Jacobi varieties of compact Riemann surfaces and various subvarieties that arise in determining the dimensions of spaces of holomorphic cross-sections of complex line bundles. In Chapter 3, the author discusses the relations between Jacobi varieties and symmetric products of Riemann surfaces relevant to the determination of dimensions of spaces of holomorphic cross-sections of complex line bundles. The final chapter derives Torelli's theorem following A. Weil, but in an analytical context. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake. Originally published in 1970. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy to read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2, R) and GL(3, R), and then for the general case of GL(n, R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.
This book contains the lectures presented at a conference held at Princeton University in May 1991 in honor of Elias M. Stein's sixtieth birthday. The lectures deal with Fourier analysis and its applications. The contributors to the volume are W. Beckner, A. Boggess, J. Bourgain, A. Carbery, M. Christ, R. R. Coifman, S. Dobyinsky, C. Fefferman, R. Fefferman, Y. Han, D. Jerison, P. W. Jones, C. Kenig, Y. Meyer, A. Nagel, D. H. Phong, J. Vance, S. Wainger, D. Watson, G. Weiss, V. Wickerhauser, and T. H. Wolff. The topics of the lectures are: conformally invariant inequalities, oscillatory integrals, analytic hypoellipticity, wavelets, the work of E. M. Stein, elliptic non-smooth PDE, nodal sets of eigenfunctions, removable sets for Sobolev spaces in the plane, nonlinear dispersive equations, bilinear operators and renormalization, holomorphic functions on wedges, singular Radon and related transforms, Hilbert transforms and maximal functions on curves, Besov and related function spaces on spaces of homogeneous type, and counterexamples with harmonic gradients in Euclidean space. Originally published in 1995. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Complex Analysis with Mathematica offers a new way of learning and teaching a subject that lies at the heart of many areas of pure and applied mathematics, physics, engineering and even art. This book offers teachers and students an opportunity to learn about complex numbers in a state-of-the-art computational environment. The innovative approach also offers insights into many areas too often neglected in a student treatment, including complex chaos and mathematical art. Thus readers can also use the book for self-study and for enrichment. The use of Mathematica enables the author to cover several topics that are often absent from a traditional treatment. Students are also led, optionally, into cubic or quartic equations, investigations of symmetric chaos and advanced conformal mapping. A CD is included which contains a live version of the book: in particular all the Mathematica code enables the user to run computer experiments.
Complex variables offer very efficient methods for attacking many difficult problems, and it is the aim of this book to offer a thorough review of these methods and their applications. Part I is an introduction to the subject, including residue calculus and transform methods. Part II advances to conformal mappings, and the study of Riemann-Hilbert problems. An extensive array of examples and exercises are included. This new edition has been improved throughout and is ideal for use in introductory undergraduate and graduate level courses in complex variables. First Edition Hb (1997): 0-521-48058-2 First Edition Pb (1997): 0-521-48523-1
This volume contains a collection of research papers dedicated to Hans Grauert on the occasion of his seventieth birthday. Hans Grauert is a pioneer in modern complex analysis, continuing the il lustrious German tradition in function theory of several complex variables of Weierstrass, Behnke, Thullen, Stein, Siegel, and many others. When Grauert came on the scene in the early 1950's, function theory was going through a revolutionary period with the geometric theory of complex spaces still in its embryonic stage. A rich theory evolved with the joint efforts of many great mathematicians including Oka, Kodaira, Cartan, and Serre. The Car tan Seminar in Paris and the Kodaira Seminar provided important venues an for its development. Grauert, together with Andreotti and Remmert, took active part in the latter. In his career he has nurtured a great number of his own doctoral students as well as other young mathematicians in his field from allover the world. For a couple of decades his work blazed the trail and set the research agenda in several complex variables worldwide. Among his many fundamentally important contributions, which are too numerous to completely enumerate here, are: 1. The complete clarification of various notions of complex spaces. 2. The solution of the general Levi problem and his work on pseudo convexity for general manifolds. 3. The theory of exceptional analytic sets. 4. The Oka principle for holomorphic bundles. 5. The proof of the Mordell conjecture for function fields. 6. The direct image theorem for coherent sheaves."
|
You may like...
Warehouse Management with SAP EWM
Balaji Kannapan, Hari Tripathy, …
Hardcover
SAP ERP Financials Quick Reference Guide…
Surya Padhi
Paperback
Configuring Sales in SAP S/4HANA
Christian Van Helfteren
Hardcover
The Feature-Driven Method for Structural…
Weihong Zhang, Ying Zhou
Paperback
R3,489
Discovery Miles 34 890
|