![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This book is a facsimile reprint and may contain imperfections such as marks, notations, marginalia and flawed pages.
Numerous examples and exercises highlight this unified treatment of the Hermitian operator theory in its Hilbert space setting. Its simple explanations of difficult subjects make it intuitively appealing to students in applied mathematics, physics, and engineering. It is also a fine reference for professionals. 1990 edition.
This treatment of complex analysis focuses on function theory on a
finitely connected planar domain. It emphasizes domains bounded by
a finite number of disjoint analytic simple closed curves. 1983
edition.
Complex analysis, more than almost any other undergraduate topic in mathematics, runs the full pure/applied gamut from the most subtle, difficult, and ingenious proofs to the most direct, hands-on, engineering-based applications. This creates challenges for the instructor as much as for the very wide range of students whose various programmes require a secure grasp of complex analysis. Its techniques are indispensable to many, but skill in the use of a mathematical tool is hazardous and fallible without a sound understanding of why and when that tool is the right one to pick up. This kind of understanding develops only by combining careful exploration of ideas, analysis of proofs, and practice across a range of exercises. Integration with Complex Numbers: A Primer on Complex Analysis offers a reader-friendly contemporary balance between idea, proof, and practice, informed by several decades of classroom experience and a seasoned understanding of the backgrounds, motivation, and competing time pressures of today's student cohorts. To achieve its aim of supporting and sustaining such cohorts through those aspects of complex analysis that they encounter in first and second-year study, it also balances competing needs to be self-contained, comprehensive, accessible, and engaging - all in sufficient but not in excessive measures. In particular, it begins where most students are likely to be, and invests the time and effort that are required in order to deliver accessibility and introductory gradualness.
This fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of 'impressions' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.
Complex analysis is a beautiful subject - perhaps the single most beautiful; and striking; in mathematics. It presents completely unforeseen results that are of a dramatic; even magical; nature. This invaluable book will convey to the student its excitement and extraordinary character. The exposition is organized in an especially efficient manner; presenting basic complex analysis in around 130 pages; with about 50 exercises. The material constantly relates to and contrasts with that of its sister subject; real analysis. An unusual feature of this book is a short final chapter containing applications of complex analysis to Lie theory.Since much of the content originated in a one-semester course given at the CUNY Graduate Center; the text will be very suitable for first year graduate students in mathematics who want to learn the basics of this important subject. For advanced undergraduates; there is enough material for a year-long course or; by concentrating on the first three chapters; for one-semester course.
Hodge theory originated as an application of harmonic theory to the study of the geometry of compact complex manifolds. The ideas have proved to be quite powerful, leading to fundamentally important results throughout algebraic geometry. This book consists of expositions of various aspects of modern Hodge theory. Its purpose is to provide the nonexpert reader with a precise idea of the current status of the subject. The three chapters develop distinct but closely related subjects: $L^2$ Hodge theory and vanishing theorems; Frobenius and Hodge degeneration; variations of Hodge structures and mirror symmetry.The techniques employed cover a wide range of methods borrowed from the heart of mathematics: elliptic PDE theory, complex differential geometry, algebraic geometry in characteristic $p$, cohomological and sheaf-theoretic methods, deformation theory of complex varieties, Calabi-Yau manifolds, singularity theory, etc. A special effort has been made to approach the various themes from their most natural starting points. Each of the three chapters is supplemented with a detailed introduction and numerous references. The reader will find precise statements of quite a number of open problems that have been the subject of active research in recent years. The reader should have some familiarity with differential and algebraic geometry, with other prerequisites varying by chapter. The book is suitable as an accompaniment to a second course in algebraic geometry.
Classic Complex Analysis is a text that has been developed over decades of teaching with an enthusiastic student reception. The first half of the book focuses on the core material. An early chapter on power series gives the reader concrete examples of analytic functions and a review of calculus. Mobius transformations are presented with emphasis on the geometric aspect, and the Cauchy theorem is covered in the classical manner. The remaining chapters provide an elegant and solid overview of special topics such as Entire and Meromorphic Functions, Analytic Continuation, Normal Families, Conformal Mapping, and Harmonic Functions.
Noted mathematician offers basic treatment of theory of analytic functions of a complex variable, touching on analytic functions of several real or complex variables as well as the existence theorem for solutions of differential systems where data is analytic. Also included is a systematic, though elementary, exposition of theory of abstract complex manifolds of one complex dimension. Topics include power series in one variable, holomorphic functions, Cauchy's integral, more. Exercises. 1973 edition.
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Dieses Arbeitsbuch enthalt die Aufgaben, Hinweise, Loesungen und Loesungswege zu allen sechs Teilen des Lehrbuchs Arens et al., Mathematik. Die Inhalte des Buchs stehen als PDF-Dateien auf der Website des Verlags zur Verfugung. Durch die stufenweise Offenlegung der Loesungen ist das Werk bestens geeignet zum Selbststudium, zur Vorlesungsbegleitung und als Prufungsvorbereitung. Inhaltlich spannt sich der Bogen von elementaren Grundlagen uber die Analysis einer Veranderlichen, der linearen Algebra, der Analysis mehrerer Veranderlicher bis hin zu fortgeschrittenen Themen der Analysis, die fur die Anwendung besonders wichtig sind, wie partielle Differenzialgleichungen, Fourierreihen und Laplacetransformationen. Auch eine Vielzahl von Aufgaben zur Wahrscheinlichkeitsrechnung und Statistik ist enthalten.
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and two-dimensional non-Euclidean geometries.
Now available in paperback, this successful radical approach to complex analysis replaces the standard calculational arguments with new geometric ones. With several hundred diagrams, and far fewer prerequisites than usual, this is the first visual intuitive introduction to complex analysis. Although designed for use by undergraduates in mathematics and science, the novelty of the approach will also interest professional mathematicians.
Ziel dieses Lehrbuches ist es, einen verstandlichen, moeglichst direkten und in sich geschlossenen Zugang zu wichtigen Ergebnissen der mehrdimensionalen Funktionentheorie zu geben. Hierbei fuhrt der Weg von elementaren Eigenschaften holomorpher Funktionen uber analytische Mengen und Holomorphiebereiche bis hin zum Levi-Problem. Ein abschliessendes Kapitel enthalt mit der Konstruktion des mehrdimensionalen holomorphen Funktionalkalkuls nach Shilov, Waelbroeck und Arens-Calderon und dem Satz von Arens-Royden wichtige Anwendungen auf die Theorie komplexer Banachalgebren. Zahlreiche UEbungsaufgaben erganzen den theoretischen Teil. Vorausgesetzt wird nur der Inhalt der Grundvorlesungen in Analysis und einer ublichen einsemestrigen Vorlesung uber Funktionentheorie einer komplexen Veranderlichen. Das Buch richtet sich besonders an fortgeschrittene Bachelorstudierende oder Studierende eines Masterstudienganges und eignet sich bestens als Begleitlekture zu einer Vorlesung oder auch zum Selbststudium.
'I very much enjoyed reading this book ... Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.
Die ersten vier Kapitel dieser Darstellung der klassischen Funktionentheorie vermitteln mit minimalem Begriffsaufwand und auf geringen Vorkenntnissen aufbauend zentrale Ergebnisse und Methoden der komplexen Analysis einer Veranderlichen und gipfeln in einem Beweis des kleinen Riemannschen Abbildungssatzes und einer Charakterisierung einfach zusammenhangender Gebiete. Weiter werden behandelt: Elliptische Funktionen (Weierstrassscher und Jacobischer Ansatz), die elementare Theorie der Modulformen einer Variablen, Anwendungen der Funktionentheorie auf die Zahlentheorie (einschliesslich eines Beweises des Primzahlsatzes). Die optisch ubersichtliche Aufbereitung und uber vierhundert Ubungsaufgaben von unterschiedlichstem Schwierigkeitsgrad mit Losungshinweisen machen den Band auch zur Prufungsvorbereitung und zum Selbststudium fur Mathematiker und Physiker gut geeignet. In der vorliegende vierten Auflage wurden u.a. einige Textstellen uberarbeitet und neue Ubungsaufgaben aufgenommen."
Das Buch bietet eine vollstandige Darstellung der Funktionentheorie, beginnend mit der Theorie der Riemann`schen Flachen einschliesslich Uniformisierungstheorie sowie einer ausfuhrlichen Darstellung der Theorie der kompakten Riemann`schen Flachen, Riemann-Roch`schem Satz, Abel`schem Theorem und Jacobi`schem Umkehrtheorem. Hierdurch motiviert wird eine kurze Einfuhrung in die Funktionentheorie mehrerer Veranderlicher gegeben und dann die Theorie der Abel`schen Funktionen bis hin zum Thetasatz entwickelt. Daran anschliessend und hierdurch motiviert wird eine Einfuhrung in die Theorie der hoeheren Modulfunktionen gegeben.
Questo testo, giunto alla seconda edizione, e adatto per una prima esposizione della teoria delle funzioni di singola variabile complessa e si rivolge a studenti di Fisica, Matematica e Ingegneria che abbiano acquisito le nozioni fondamentali dell Analisi Matematica reale. L esigenza di una nuova pubblicazione nasce dall idea di effettuare una selezione di argomenti, ritenuti fondamentali, la cui esposizione risulti sistematica e autoconsistente in circa 60 ore di lezione mantenendo, al tempo stesso, il rigore matematico volto a favorire la maturazione scientifica dello studente e prepararlo alla lettura di testi avanzati. A corredo della trattazione teorica vengono proposti circa 250 esercizi, raccolti tra le prove scritte assegnate per il superamento del corso, tutti forniti di soluzione dettagliata. Il loro svolgimento costituisce una parte imprescindibile per l acquisizione della materia."
Die Funktionentheorie einer komplexen Variablen hat heute hAher-dimensionale Analoga: dabei wird die Algebra der komplexen Zahlen durch die nicht-kommutative Algebra der reellen Quaternionen bzw. Clifford-Algebren ersetzt. In den letzten 30 Jahren hat sich die so genannte Quaternionen- und die reelle Clifford-Analysis erfolgreich entwickelt. Eine Vielzahl von Anwendungen haben diese Funktionentheorie hAher-dimensionaler Variablen zu einem wichtigen Instrument der Analysis und deren Anwendungen in der mathematischen Physik werden lassen. Das Buch reflektiert den neuesten Stand der Forschung und entwickelt sowohl die hAher-dimensionalen Ergebnisse als auch die klassischen komplexen Resultate aus einem einheitlichen Begriff der Holomorphie. Der fundamentale Begriff der holomorphen Funktion als LAsung des Cauchy-Riemann-Systems wird im HAher-dimensionalen unter Beibehaltung der Bezeichnung als LAsung eines entsprechenden Systems partieller Differentialgleichungen 1. Ordnung verstanden. Historische Bemerkungen, zahlreiche Beispiele, viele Abbildungen sowie eine angemessene Auswahl von Aoebungsaufgaben festigen und erweitern die erworbenen Kenntnisse. Das vorliegende Buch ist fA1/4r Studenten der Mathematik, Physik und mathematisch orientierten Ingenieurstudenten im Grund- und Fachstudium geeignet. Es kann auch als Grundlage von Proseminaren oder Seminaren dienen. Die beiliegende CD enthAlt eine umfangreiche Literaturdatenbank sowie ein Maple-Package, das die im Buch eingefA1/4hrten Werkzeuge und Methoden als Kommandos bzw. vorgefertigte Prozeduren enthAlt. Einige Beispiel-Worksheets unterstA1/4tzen die Einarbeitung in das Package. |
You may like...
Extension of Holomorphic Functions
Marek Jarnicki, Peter Pflug
Hardcover
R4,563
Discovery Miles 45 630
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R887
Discovery Miles 8 870
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R920
Discovery Miles 9 200
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
|