Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL... In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time... this publication...will no doubt stimulate generations of scholars to come." Volume IV collects Siegels papers from 1968 to 1975.
The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. In recent years, due largely to the work of G.B. Price, there has been a resurgence of interest in the study of these numbers and, more importantly, in the study of functions defined on the ring of bicomplex numbers, which mimic the behavior of holomorphic functions of a complex variable. While the algebra of bicomplex numbers is a four-dimensional real algebra, it is useful to think of it as a "complexification" of the field of complex numbers; from this perspective, the bicomplex algebra possesses the properties of a one-dimensional theory inside four real dimensions. Its rich analysis and innovative geometry provide new ideas and potential applications in relativity and quantum mechanics alike. The book will appeal to researchers in the fields of complex, hypercomplex and functional analysis, as well as undergraduate and graduate students with an interest in one- or multidimensional complex analysis.
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL. In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time...this publication...will no doubt stimulate generations of scholars to come." Volume III collects Siegel's papers from 1945 to 1964.
In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis. There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any "full" interpolation results for linear operators between Morrey spaces. This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory.
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL, who is rising seventy. In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time...this publication...will no doubt stimulate generations of scholars to come." Volume II includes Siegel's papers written between 1937 and 1944.
Extending Griffiths' classical theory of period mappings for compact Kahler manifolds, this book develops and applies a theory of period mappings of "Hodge-de Rham type" for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Froelicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkahler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.
This book presents a comprehensive introduction to the concepts of almost periodicity, asymptotic almost periodicity, almost automorphy, asymptotic almost automorphy, pseudo-almost periodicity, and pseudo-almost automorphy as well as their recent generalizations. Some of the results presented are either new or else cannot be easily found in the mathematical literature. Despite the noticeable and rapid progress made on these important topics, the only standard references that currently exist on those new classes of functions and their applications are still scattered research articles. One of the main objectives of this book is to close that gap. The prerequisites for the book is the basic introductory course in real analysis. Depending on the background of the student, the book may be suitable for a beginning graduate and/or advanced undergraduate student. Moreover, it will be of a great interest to researchers in mathematics as well as in engineering, in physics, and related areas. Further, some parts of the book may be used for various graduate and undergraduate courses.
Hans Grauert was one of the world's leading mathematicians in the field of Several Complex Variables; he not only shaped the development of this area decisively but was also responsible for some of its most important results. This representative selection of mathematical papers exhibits Grauert's influential research and reflects two decades of excellence. In this edition, each paper has been augmented by a detailed commentary, thus offering a comprehensive survey of the development of this fascinating subject from its beginnings in Munster and Goettingen. Hans Grauert may be regarded as a direct successor of Gauss, holding a chair at Goettingen that before him was held by Siegel, Weyl, Hilbert, Riemann and Gauss.
This volume is dedicated to Professor Stefan Samko on the occasion of his seventieth birthday. The contributions display the range of his scientific interests in harmonic analysis and operator theory. Particular attention is paid to fractional integrals and derivatives, singular, hypersingular and potential operators in variable exponent spaces, pseudodifferential operators in various modern function and distribution spaces, as well as related applications, to mention but a few. Most contributions were firstly presented in two conferences at Lisbon and Aveiro, Portugal, in June-July 2011.
This book deals with various aspects of commutants and reducing subspaces of multiplication operators on the Bergman space, along with relevant von Neumann algebras generated by these operators, which have been the focus of considerable attention from the authors and other experts in recent years. The book reviews past developments and offers insights into cutting-edge developments in the study of multiplication operators. It also provides commentary and comparisons to stimulate research in this area.
The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.
The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are "minimal" in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory.
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the "4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems," which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysics, and from nonlinear analysis to the history of chaos theory. The corresponding proceedings collected in this volume address a broad spectrum of contemporary topics, including but not limited to networks, circuits, systems, biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, management complexity and global systems.
Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples' Friendship University of Russia in Moscow on August 22-27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen's An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." - Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005
This book is related to the theory of functions of a-bounded type in the ha- plane of the complex plane. I constructed this theory by application of the Li- ville integro-differentiation. To some extent, it is similar to M.M.Djrbashian's factorization theory of the classes Na of functions of a-bounded type in the disc, as much as the well known results on different classes and spaces of regular functions in the half-plane are similar to those in the disc. Besides, the book contains improvements of several results such as the Phragmen-Lindelof Principle and Nevanlinna Factorization in the Half-Plane and offers a new, equivalent definition of the classical Hardy spaces in the half-plane. The last chapter of the book presents author's united work with G.M. Gubreev (Odessa). It gives an application of both a-theories in the disc and in the half-plane in the spectral theory of linear operators. This is a solution of a problem repeatedly stated by M.G.Krein and being of special interest for a long time. The book is proposed for a wide range of readers. Some of its parts are comprehensible for graduate students, while the book in the whole is intended for young researchers and qualified specialists in the field.
Hans Grauert was one of the world's leading mathematicians in the field of Several Complex Variables; he not only shaped the development of this area decisively but was also responsible for some of its most important results. This representative selection of mathematical papers exhibits Grauert's influential research and reflects two decades of excellence. In this edition, each paper has been augmented by a detailed commentary, thus offering a comprehensive survey of the development of this fascinating subject from its beginnings in Munster and Goettingen. Hans Grauert may be regarded as a direct successor of Gauss, holding a chair at Goettingen that before him was held by Siegel, Weyl, Hilbert, Riemann and Gauss.
Modern science has abstracted, as compensation for establishing rigorousness, the complexity of the real world, and has inclined toward oversimpli?ed ?ctitious n- ratives; as a result, a disjunction has emerged between the wisdom of science and reality. Re?ecting on this, we see the need for science to recover reality; can it reveal new avenues for thought and investigation of the complexity? The study of science is the pursuit of clarity and distinctness. Physics,after Galilei placed it in the realm of mathematics, has been trying to establish clearness by mathematical logic. While physics and mathematics, respectively, have different intellectual incentives, they have intersected in history on countless occasions and have woven a ?awless system of wisdom. The core of rigorous science is always made of mathematical logic; the laws of science cannot be represented without the language of mathematics. Conversely, it is undoubtedly dif?cult to stimulate ma- ematical intellect without a reference to the interests of science that are directed to the real world. However, various criticisms have been raised against the discourses of sciences that explain the events of the real world as if they are "governed" by mathematical laws. Sciences, being combined with technologies, have permeated, in the form of technical rationalism, the domain of life, politics, and even the psychological world. The criticisms accuse seemingly logical scienti?c narratives of being responsible for widespread destruction and emergence of crises, unprecedented suffering of hum- ity.
This book addresses the need for an accessible comprehensive exposition of the theory of uniform measures; the need that became more critical when recently uniform measures reemerged in new results in abstract harmonic analysis. Until now, results about uniform measures have been scattered through many papers written by a number of authors, some unpublished, written using a variety of definitions and notations. Uniform measures are certain functionals on the space of bounded uniformly continuous functions on a uniform space. They are a common generalization of several classes of measures and measure-like functionals studied in abstract and topological measure theory, probability theory, and abstract harmonic analysis. They offer a natural framework for results about topologies on spaces of measures and about the continuity of convolution of measures on topological groups and semitopological semigroups. The book is a reference for the theory of uniform measures. It includes a self-contained development of the theory with complete proofs, starting with the necessary parts of the theory of uniform spaces. It presents diverse results from many sources organized in a logical whole, and includes several new results. The book is also suitable for graduate or advanced undergraduate courses on selected topics in topology and functional analysis. The text contains a number of exercises with solution hints, and four problems with suggestions for further research.
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincare, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian's recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory.
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.
This book studies the situation over discrete Abelian groups with wide range applications. It covers classical functional equations, difference and differential equations, polynomial ideals, digital filtering and polynomial hypergroups, giving unified treatment of several different problems. There is no other comprehensive work in this field. The book will be of interest to graduate students, research workers in harmonic analysis, spectral analysis, functional equations and hypergroups.
Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic analysis, to name a few. Additionally, this volume illustrates the historical roots of Blaschke products and highlights key research on this topic. For nearly a century, Blaschke products have been researched. Their boundary behaviour, the asymptomatic growth of various integral means and their derivatives, their applications within several branches of mathematics, and their membership in different function spaces and their dynamics, are a few examples of where Blaschke products have shown to be important. The contributions written by experts from various fields of mathematical research will engage graduate students and researches alike, bringing the reader to the forefront of research in the topic. The readers will also discover the various open problems, enabling them to better pursue their own research. |
You may like...
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,404
Discovery Miles 24 040
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,266
Discovery Miles 62 660
|