![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
The chapters in this volume are based on talks given at the inaugural Aspects of Time-Frequency Analysis conference held in Turin, Italy from July 5-7, 2017, which brought together experts in harmonic analysis and its applications. New connections between different but related areas were presented in the context of time-frequency analysis, encouraging future research and collaborations. Some of the topics covered include: Abstract harmonic analysis, Numerical harmonic analysis, Sampling theory, Compressed sensing, Mathematical signal processing, Pseudodifferential operators, and Applications of harmonic analysis to quantum mechanics. Landscapes of Time-Frequency Analysis will be of particular interest to researchers and advanced students working in time-frequency analysis and other related areas of harmonic analysis.
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system's functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system's information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. Contents Complexity Empirical allometry Statistics, scaling and simulation Allometry theories Strange kinetics Fractional probability calculus
System state estimation in the presence of noise is critical for control systems, signal processing, and many other applications in a variety of fields. Developed decades ago, the Kalman filter remains an important, powerful tool for estimating the variables in a system in the presence of noise. However, when inundated with theory and vast notations, learning just how the Kalman filter works can be a daunting task. With its mathematically rigorous, "no frills" approach to the basic discrete-time Kalman filter, A Kalman Filter Primer builds a thorough understanding of the inner workings and basic concepts of Kalman filter recursions from first principles. Instead of the typical Bayesian perspective, the author develops the topic via least-squares and classical matrix methods using the Cholesky decomposition to distill the essence of the Kalman filter and reveal the motivations behind the choice of the initializing state vector. He supplies pseudo-code algorithms for the various recursions, enabling code development to implement the filter in practice. The book thoroughly studies the development of modern smoothing algorithms and methods for determining initial states, along with a comprehensive development of the "diffuse" Kalman filter. Using a tiered presentation that builds on simple discussions to more complex and thorough treatments, A Kalman Filter Primer is the perfect introduction to quickly and effectively using the Kalman filter in practice.
Complex Analysis and Applications, Second Edition explains complex analysis for students of applied mathematics and engineering. Restructured and completely revised, this textbook first develops the theory of complex analysis, and then examines its geometrical interpretation and application to Dirichlet and Neumann boundary value problems. A discussion of complex analysis now forms the first three chapters of the book, with a description of conformal mapping and its application to boundary value problems for the two-dimensional Laplace equation forming the final two chapters. This new structure enables students to study theory and applications separately, as needed. In order to maintain brevity and clarity, the text limits the application of complex analysis to two-dimensional boundary value problems related to temperature distribution, fluid flow, and electrostatics. In each case, in order to show the relevance of complex analysis, each application is preceded by mathematicalbackground that demonstrates how a real valued potential function and its related complex potential can be derived from the mathematics that describes the physical situation.
Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications. Alternate approaches, such as Fichera's proof of the Goursat Theorem and Estermann's proof of the Cauchy's Integral Theorem, are also presented for comparison. Discussions include holomorphic functions, the Weierstrass Convergence Theorem, analytic continuation, isolated singularities, homotopy, Residue theory, conformal mappings, special functions and boundary value problems. More than 200 examples and 150 exercises illustrate the subject matter and make this book an ideal text for university courses on complex analysis, while the comprehensive compilation of theories and succinct proofs make this an excellent volume for reference.
The study of univalent functions dates back to the early years of the 20th century, and is one of the most popular research areas in complex analysis. This book is directed at introducing and bringing up to date current research in the area of univalent functions, with an emphasis on the important subclasses, thus providing an accessible resource suitable for both beginning and experienced researchers. Contents Univalent Functions - the Elementary Theory Definitions of Major Subclasses Fundamental Lemmas Starlike and Convex Functions Starlike and Convex Functions of Order Strongly Starlike and Convex Functions Alpha-Convex Functions Gamma-Starlike Functions Close-to-Convex Functions Bazilevic Functions B1( ) Bazilevic Functions The Class U( ) Convolutions Meromorphic Univalent Functions Loewner Theory Other Topics Open Problems
This volume of the Encyclopaedia contains three contributions in the field of complex analysis. The topics treated are mean periodicity and convolutionequations, Yang-Mills fields and the Radon-Penrose transform, and stringtheory. The latter two have strong links with quantum field theory and the theory of general relativity. In fact, the mathematical results described inthe book arose from the need of physicists to find a sound mathematical basis for their theories. The authors present their material in the formof surveys which provide up-to-date accounts of current research. The book will be immensely useful to graduate students and researchers in complex analysis, differential geometry, quantum field theory, string theoryand general relativity.
Aimed at graduate students, this textbook provides an accessible and comprehensive introduction to operator theory. Rather than discuss the subject in the abstract, this textbook covers the subject through twenty examples of a wide variety of operators, discussing the norm, spectrum, commutant, invariant subspaces, and interesting properties of each operator. The text is supplemented by over 600 end-of-chapter exercises, designed to help the reader master the topics covered in the chapter, as well as providing an opportunity to further explore the vast operator theory literature. Each chapter also contains well-researched historical facts which place each chapter within the broader context of the development of the field as a whole.
Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy-Hadamard, Chebychev, Markov, Euler's constant, Grothendieck, Hilbert, Hardy, Carleman, Landau-Kolmogorov, Carlson, Bernstein-Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.
This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.
Systems biology came about as growing numbers of engineers and scientists from other fields created algorithms which supported the analysis of biological data in incredible quantities. Whereas biologists of the past had been forced to study one item or aspect at a time, due to technical and biological limitations, it suddenly became possible to study biological phenomena within their natural contexts. This interdisciplinary field offers a holistic approach to interpreting these processes, and has been responsible for some of the most important developments in the science of human health and environmental sustainability. This Very Short Introduction outlines the exciting processes and possibilities in the new field of systems biology. Eberhard O. Voit describes how it enabled us to learn how intricately the expression of every gene is controlled, how signaling systems keep organisms running smoothly, and how complicated even the simplest cells are. He explores what this field is about, why it is needed, and how it will affect our understanding of life, particularly in the areas of personalized medicine, drug development, food and energy production, and sustainable stewardship of our environments. Throughout he considers how new tools are being provided from the fields of mathematics, computer science, engineering, physics, and chemistry to grasp the complexity of the countless interacting processes in cells which would overwhelm the cognitive and analytical capabilities of the human mind. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Starting with the Zermelo-Fraenhel axiomatic set theory, this book gives a self-contained, step-by-step construction of real and complex numbers. The basic properties of real and complex numbers are developed, including a proof of the Fundamental Theorem of Algebra. Historical notes outline the evolution of the number systems and alert readers to the fact that polished mathematical concepts, as presented in lectures and books, are the culmination of the efforts of great minds over the years. The text also includes short life sketches of some of the contributing mathematicians. The book provides the logical foundation of Analysis and gives a basis to Abstract Algebra. It complements those books on real analysis which begin with axiomatic definitions of real numbers.The book can be used in various ways: as a textbook for a one semester course on the foundations of analysis for post-calculus students; for a seminar course; or self-study by school and college teachers.
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern's bound and Trepreau's algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.
Different aspects of harmonic analysis, complex analysis, sampling theory, approximation theory and related topics are covered in this volume. The topics included are Fourier analysis, Pade approximation, dynamical systems and difference operators, splines, Christoffel functions, best approximation, discrepancy theory and Jackson-type theorems of approximation. The articles of this collection were originated from the International Conference in Approximation Theory, held in Savannah, GA in 2017, and organized by the editors of this volume.
This book gives a systematic presentation of real algebraic varieties. Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable. This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available literature, the "folklore". In particular, the introduction of topological methods of the theory to non-specialists is one of the original features of the book. The first three chapters introduce the basis and classical methods of real and complex algebraic geometry. The last three chapters each focus on one more specific aspect of real algebraic varieties. A panorama of classical knowledge is presented, as well as major developments of the last twenty years in the topology and geometry of varieties of dimension two and three, without forgetting curves, the central subject of Hilbert's famous sixteenth problem. Various levels of exercises are given, and the solutions of many of them are provided at the end of each chapter.
This monograph provides a concise, accessible snapshot of key topics in several complex variables, including the Cauchy Integral Formula, sequences of holomorphic functions, plurisubharmonic functions, the Dirichlet problem, and meromorphic functions. Based on a course given at Universite de Montreal, this brief introduction covers areas of contemporary importance that are not mentioned in most treatments of the subject, such as modular forms, which are essential for Wiles' theorem and the unification of quantum theory and general relativity. Also covered is the Riemann manifold of a function, which generalizes the Riemann surface of a function of a single complex variable and is a topic that is well-known in one complex variable, but rarely treated in several variables. Many details, which are intentionally left out, as well as many theorems are stated as problems, providing students with carefully structured instructive exercises. Prerequisites for use of this book are functions of one complex variable, functions of several real variables, and topology, all at the undergraduate level. Lectures on Several Complex Variables will be of interest to advanced undergraduate and beginning undergraduate students, as well as mathematical researchers and professors.
Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved).
Ever since the groundbreaking work of J.J. Kohn in the early 1960s, there has been a significant interaction between the theory of partial differential equations and the function theory of several complex variables. Partial Differential Equations and Complex Analysis explores the background and plumbs the depths of this symbiosis.
Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.
Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.
Complex Analysis is the powerful fusion of the complex numbers (involving the 'imaginary' square root of -1) with ordinary calculus, resulting in a tool that has been of central importance to science for more than 200 years. This book brings this majestic and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. The 501 diagrams of the original edition embodied geometrical arguments that (for the first time) replaced the long and often opaque computations of the standard approach, in force for the previous 200 years, providing direct, intuitive, visual access to the underlying mathematical reality. This new 25th Anniversary Edition introduces brand-new captions that fully explain the geometrical reasoning, making it possible to read the work in an entirely new way-as a highbrow comic book! |
You may like...
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R887
Discovery Miles 8 870
Boundary Value Problems, Weyl Functions…
Henk De Snoo, Seppo Hassi, …
Hardcover
R2,103
Discovery Miles 21 030
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
A Treatise on Differential Equations…
J (John) 1803-1887 Hymers
Hardcover
R919
Discovery Miles 9 190
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
|