![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Analytic Extension is a mysteriously beautiful property of analytic functions. With this point of view in mind the related survey papers were gathered from various fields in analysis such as integral transforms, reproducing kernels, operator inequalities, Cauchy transform, partial differential equations, inverse problems, Riemann surfaces, Euler-Maclaurin summation formulas, several complex variables, scattering theory, sampling theory, and analytic number theory, to name a few. Audience: Researchers and graduate students in complex analysis, partial differential equations, analytic number theory, operator theory and inverse problems.
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP."
The subject matter of this book formed the substance of a mathematical se am which was worked by many of the great mathematicians of the last century. The mining metaphor is here very appropriate, for the analytical tools perfected by Cauchy permitted the mathematical argument to penetra te to unprecedented depths over a restricted region of its domain and enabled mathematicians like Abel, Jacobi, and Weierstrass to uncover a treasurehouse of results whose variety, aesthetic appeal, and capacity for arousing our astonishment have not since been equaled by research in any other area. But the circumstance that this theory can be applied to solve problems arising in many departments of science and engineering graces the topic with an additional aura and provides a powerful argument for including it in university courses for students who are expected to use mathematics as a tool for technological investigations in later life. Unfortunately, since the status of university staff is almost wholly determined by their effectiveness as research workers rather than as teachers, the content of undergraduate courses tends to reflect those academic research topics which are currently popular and bears little relationship to the future needs of students who are themselves not destined to become university teachers. Thus, having been comprehensively explored in the last century and being undoubtedly difficult .
The first survey of its kind, written by internationally known, outstanding experts who developed substantial parts of the field. The book contains an introduction written by Remmert, describing the history of the subject, and is very useful to graduate students and researchers in complex analysis, algebraic geometry and differential geometry.
This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problems will encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
This book provides an introduction into the modern theory of classical harmonic analysis, dealing with Fourier analysis and the most elementary singular integral operators, the Hilbert transform and Riesz transforms. Ideal for self-study or a one semester course in Fourier analysis, included are detailed examples and exercises.
This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev-Besov and Triebel-Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11-15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.
A development of some of the principal applications of function theory in several complex variables to Banach algebras. The authors do not presuppose any knowledge of several complex variables on the part of the reader, and all relevant material is developed within the text. Furthermore, the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. This third edition contains new material on maximum modulus algebras and subharmonicity, the hull of a smooth curve, integral kernels, perturbations of the Stone-Weierstrass Theorem, boundaries of analytic varieties, polynomial hulls of sets over the circle, areas, and the topology of hulls. The authors have also included a new chapter commenting on history and recent developments, as well as an updated and expanded reading list.
The monograph is devoted to the systematic presentation of the so called dressing method for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new non-trivial solutions of a given equation from (maybe trivial) solution of the same or related equation. The Moutard and Darboux transformations discovered in XIX century as applied to linear equations, the Backlund transformation in differential geometry of surfaces, the factorization method, the Riemann-Hilbert problem in the form proposed by Shabat and Zakharov for soliton equations and its extension in terms of the d-bar formalism comprise the main objects of the book. Throughout the text, a generally sufficient linear experience of readers is exploited, with a special attention to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions.
This volume is a collection of up-to-date research and expository papers on different aspects of complex analysis, including relations to operator theory and hypercomplex analysis. The articles cover many important and essential subjects, such as the SchrAdinger equation, subelliptic operators, Lie algebras and superalgebras, Toeplitz and Hankel operators, reproducing kernels and Qp spaces, among others. Most of the papers were presented at the International Symposium on Complex Analysis and Related Topics held in Cuernavaca (Morelos), Mexico, in November 1996, which was attended by approximately 50 experts in the field. The book can be used as a reference work on recent research in the subjects covered. It is one of the few books stressing the relation between operator theory and complex and hypercomplex analyses. The book is addressed to researchers and postgraduate students in the fields named here and in related ones.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.
This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
Textbooks, even excellent ones, are a reflection of their times. Form and content of books depend on what the students know already, what they are expected to learn, how the subject matter is regarded in relation to other divisions of mathematics, and even how fashionable the subject matter is. It is thus not surprising that we no longer use such masterpieces as Hurwitz and Courant's Funktionentheorie or Jordan's Cours d'Analyse in our courses. The last two decades have seen a significant change in the techniques used in the theory of functions of one complex variable. The important role played by the inhomogeneous Cauchy-Riemann equation in the current research has led to the reunification, at least in their spirit, of complex analysis in one and in several variables. We say reunification since we think that Weierstrass, Poincare, and others (in contrast to many of our students) did not consider them to be entirely separate subjects. Indeed, not only complex analysis in several variables, but also number theory, harmonic analysis, and other branches of mathematics, both pure and applied, have required a reconsidera tion of analytic continuation, ordinary differential equations in the complex domain, asymptotic analysis, iteration of holomorphic functions, and many other subjects from the classic theory of functions of one complex variable. This ongoing reconsideration led us to think that a textbook incorporating some of these new perspectives and techniques had to be written."
In the spectrum of mathematics, graph theory which studies a mathe matical structure on a set of elements with a binary relation, as a recognized discipline, is a relative newcomer. In recent three decades the exciting and rapidly growing area of the subject abounds with new mathematical devel opments and significant applications to real-world problems. More and more colleges and universities have made it a required course for the senior or the beginning postgraduate students who are majoring in mathematics, computer science, electronics, scientific management and others. This book provides an introduction to graph theory for these students. The richness of theory and the wideness of applications make it impossi ble to include all topics in graph theory in a textbook for one semester. All materials presented in this book, however, I believe, are the most classical, fundamental, interesting and important. The method we deal with the mate rials is to particularly lay stress on digraphs, regarding undirected graphs as their special cases. My own experience from teaching out of the subject more than ten years at University of Science and Technology of China (USTC) shows that this treatment makes hardly the course di: fficult, but much more accords with the essence and the development trend of the subject."
Starting with the fundamentals of Q spaces and their relationships to Besov spaces, this book presents all major results around Q spaces obtained in the past 16 years. The applications of Q spaces in the study of the incompressible Navier-Stokes system and its stationary form are also discussed. This self-contained book can be used as an essential reference for researchers and graduates in analysis and partial differential equations.
There has been a flurry of activity in recent years in the loosely defined area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of Cn. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literature. The central idea in almost all these proofs is based on integral representations of holomorphic functions and elementary properties of the Bergman kernel, the Bergman metric, and the automorphism group. The unit ball was chosen as the setting since most results can be achieved there using straightforward formulas without much fuss. The book can be read comfortably by anyone familiar with single variable complex analysis; no prerequisite on several complex variables is required. The author has included exercises at the end of each chapter that vary greatly in the level of difficulty.
This volume is dedicated to Tsuyoshi Ando, a- foremost expert in operator theory, matrix theory, complex analysis, and their applications, on the occasion of his 60th birthday. The book opens with his biography and list of publications. It contains a selection of papers covering a broad spectrum of topics ranging from abstract operator theory to various concrete problems and applications. The majority of the papers deal with topics in modern operator theory and its applications. This volume also contains papers on interpolation and completion problems, factorisation problems and problems connected with complex analysis. The book will appeal to a wide audience of pure and applied mathematicians.
We study the boundary behaviour of a conformal map of the unit disk onto an arbitrary simply connected plane domain. A principal aim of the theory is to obtain a one-to-one correspondence between analytic properties of the function and geometrie properties of the domain. In the classical applications of conformal mapping, the domain is bounded by a piecewise smooth curve. In many recent applications however, the domain has a very bad boundary. It may have nowhere a tangent as is the case for Julia sets. Then the conformal map has many unexpected properties, for instance almost all the boundary is mapped onto almost nothing and vice versa. The book is meant for two groups of users. (1) Graduate students and others who, at various levels, want to learn about conformal mapping. Most sections contain exercises to test the understand ing. They tend to be fairly simple and only a few contain new material. Pre requisites are general real and complex analyis including the basic facts about conformal mapping (e.g. AhI66a). (2) Non-experts who want to get an idea of a particular aspect of confor mal mapping in order to find something useful for their work. Most chapters therefore begin with an overview that states some key results avoiding tech nicalities. The book is not meant as an exhaustive survey of conformal mapping. Several important aspects had to be omitted, e.g. numerical methods (see e.g."
An intensive development of the theory of generalized analytic functions started when methods of Complex Analysis were combined with methods of Functional Analysis, especially with the concept of distributional solutions to partial differential equations. The power of these interactions is far from being exhausted. In order to promote the further development of the theory of generalized analytic functions and applications of partial differential equations to Mechanics, the Technical University of Graz organized a conference whose Proceedings are contained in the present volume. The contributions on generalized analytic functions (Part One) deal not only with problems in the complex plane (boundary value and initial value problems), but also related problems in higher dimensions are investigated where both several complex variables and the technique of Clifford Analysis are used. Part Two of the Proceedings is devoted to applications to Mechanics. It contains contributions to a variety of general methods such as L p-methods, boundary elements and asymptotic methods, and hemivariational inequalities. A substantial number of the papers of Part Two, however, deals with problems in Ocean Acoustics. The papers of both parts of the Proceedings can be recommended to mathematicians, physicists, and engineers working in the fields mentioned above, as well as for further reading within graduate studies.
This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.
This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of - contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky-Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials. The book is a valuable resource for a wide audience, including graduate students and researchers.
The authors aim here is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician. They follow a path in the tradition of Ahlfors and Bers by dedicating the book to a very precise goal: the statement and proof of the Fundamental Theorem for functions of one complex variable. They discuss the many equivalent ways of understanding the concept of analyticity, and offer a leisure exploration of interesting consequences and applications. Readers should have had undergraduate courses in advanced calculus, linear algebra, and some abstract algebra. No background in complex analysis is required." |
![]() ![]() You may like...
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R974
Discovery Miles 9 740
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,433
Discovery Miles 64 330
|