![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
Solid State Physics emphasizes a few fundamental principles and extracts from them a wealth of information. This approach also unifies an enormous and diverse subject which seems to consist of too many disjoint pieces. The book starts with the absolutely minimum of formal tools, emphasizes the basic principles, and employs physical reasoning (" a little thinking and imagination" to quote R. Feynman) to obtain results. Continuous comparison with experimental data leads naturally to a gradual refinement of the concepts and to more sophisticated methods. After the initial overview with an emphasis on the physical concepts and the derivation of results by dimensional analysis, The Physics of Solids deals with the Jellium Model (JM) and the Linear Combination of Atomic Orbitals (LCAO) approaches to solids and introduces the basic concepts and information regarding metals and semiconductors. The remainder, constituting enrichment and elective material, re-examines the model under more realistic assumptions a well as new, more advanced subjects, some normally treated on the graduate level. While prerequisites include quantum mechanics, electromagnetism, and possibly statistical physics, appendices summarizing these subjects to make are included to make the book more self-contained. The basic text is enhanced with worked problems, copious illustrations, chapter-end exercises and summaries. The approach, which emphasizes the underlying physical concepts, unifies to some extent a subject that can seem too diverse and consisting of too many disjoint pieces, requires from students less memorizing of facts and formalisms but more thinking.
This thesis describes an investigation into homogeneous KN crystalline films grown on Pt/Ti/SiO2/Si substrates, amorphous KN films grown on TiN/Si substrates using the RF-sputtering method, and the ferroelectic and piezoelectric properties of these KN films. KNbO3 (KN) thin films have been extensively investigated for applications in nonlinear optical, electro-optical and piezoelectric devices. However, the electrical properties of KN films have not yet been reported, because it is difficult to grow stoichiometric KN thin films due to K2O evaporation during growth. This thesis also reports on the ReRAM properties of a biocompatible KN ReRAM memristor powered by the KN nanogenerator, and finally shows the biological synaptic properties of the KN memristor for application to the artificial synapse of a neuromorphic computing system.
This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids containing cholesteric liquid crystals in natural synovial liquids are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.
It is possible to "stretch" a liquid and, when suitably prepared, liquids are capable of sustaining substantial levels of tension, often for significant periods of time. These negative pressure states are metastable but can last for days - long enough for substantial experimental investigation. This volume is a review of recent and current research into the behaviour of liquids under negative pressure. Part I deals with the thermodynamics of stretched liquids. Part II discusses the physical and chemical behaviour of liquids under negative pressure. Part III contains papers on the effect of negative pressure on the solidification of a liquid. Part IV is devoted to stretched helium and Part V discusses cavitation in various stretched liquids. Part VI deals with the effect of foreign substances on cavitation.
"Phase Change Materials: Science and Applications" provides a unique introduction of this rapidly developing field. Clearly written and well-structured, this volume describes the material science of these fascinating materials from a theoretical and experimental perspective. Readers will find an in-depth description of their existing and potential applications in optical and solid state storage devices as well as reconfigurable logic applications. Researchers, graduate students and scientists with an interest in this field will find "Phase Change Materials" to be a valuable reference.
I ?rst heard of k.p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k.p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k.p technique to predict and 't non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter's recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks's talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k.p method for interpreting my data in a simple way."
This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.
Solid state physics is the branch of physics that is primarily
devoted to the study of matter in its solid phase, especially at
the atomic level. This prestigious serial presents timely and
state-of-the-art reviews pertaining
The book depicts comprehensive studies on thermal decomposition of Kaolinite by different physico-chemical methods carried out by various scientists in last 100 years and results of the studies conducted by author in past 33 years. It also provides a critical analysis of different views on Kaolinite-Mullite reaction series, characterization of controversial spinel phase in Kaolinite-Mullite reaction series and explanation of DTA events of Kaolinite. The book helps both researchers and students to realise the new mechanism of transformation of Kaolinite to Mullite. The new reaction processes discussed in the book also help ceramic experts to synthesize Mullite grains in commercial way for production of Mullite porcelain and Mullite refractory.
Damage mechanics is concerned with mechanics-based analyses of microstructural events in solids responsible for changes in their response to external loading. The microstructural events can occur as cracks, voids, slipped regions, etc., with a spatial distribution within the volume of a solid. If a solid contains oriented elements in its microsctructure, e.g. fibers, the heterogeneity and asisotropy aspects create situations which form a class of problems worthy of special treatment. This book deals with such treatments with particular emphasis on application to technological composite materials. Chapter one describes the basic principles underlying both the micromechanics approach and the continuum damage mechanics approach. It also reviews the relevant statistical concepts. The next three chapters are devoted to developments of the continuum damage mechanics approach related to characterization of damage with internal variables, evolution of damage and its coupling with other inelastic effects such as plasticity. Chapter 5 describes observations of damage from notches in composite laminates and puts forward some pragmatic modelling ideas for a complex damage configuration. The next two chapters form the bulk of the micromechanics approach in this volume. The first one deals with microcracking and the other with interfacial damage in composite materials.
The triennial International Alloy Conferences (lACs) aim at the identification and promotion of the common elements developed in the study, either experimental, phenomenological, or theoretical and computational, of materials properties across materials types, from metals to minerals. To accomplish this goal, the lACs bring together scientists from a wide spectrum of materials science including experiment, theory, modeling, and computation, incorporating a broad range of materials properties. The first lAC, lAC-I, took place in Athens, Greece, June 16-21, 1996. The present volume of proceedings contains the papers presented at IAC-2, that took place in Davos, Switzerland, August 8-13, 1999. The topics in this book fall into several themes, which suggest a number of different classification schemes. We have chosen a scheme that classifies the papers in the volume into the categories Microstructural Properties; Ordering, Kinetics and Diffusion; Magnetic Properties and Elastic Properties. We have juxtaposed apparently disparate of revealing the dynamic character approaches to similar physical processes, in the hope of the processes under consideration. We hope this will invigorate new kinds of discussion and reveal challenges and new avenues to the description and prediction of properties of materials in the solid state and the conditions that produce them.
Thermal Conductivity: Thermal Conductivity of LooseFill Materials by a RadialHeatFlow Method (D.R. Flynn). The Probe Method for Measurement of Thermal Conductivity (A.E. Wechsler). Electrical Resistivity: Methods for Electrical Resistivity Measurement Applicable to Medium and Good Electrical Conductors (B. Cales, P. Abelard). Thermal Diffusivity: Modulated Electron Beam Thermal Diffusivity Equipment (R. De Conink). The Apparatus for Measurement of Thermophysical Properties of Liquids by AC HotWire Technique (L.P. Phylippov et al.). Specific Heat: Practical Modulation Calorimetry (Y.A. Kraftmakher). The Application of Differential Scanning Calorimetry to the Measurement of Specific Heat (M.J. Richardson). Thermal Expansion: Methods of Measuring Thermal Expansion (R.K. Kirby). The Review of Certified Thermophysical Property SRMs. Fourteen additonal articles. Index.
Volume 7 of the Handbook of Magnetic Materials provides an overview of some of the most exciting topics in magnetism today. Firstly, a substantial step forward in the understanding of metallic magnetism has been reached by means of electronic band structure calculation. Progress in this area has been made not only due to the availability of high speed computing machines but also due to sophistication in the computational methodology. Two chapters are devoted to this subject, one of which is devoted to the elements and the other dealing primarily with 4f and 5f systems, including examples of the large group of intermetallic compounds. In both chapters the authors have concentrated on explaining the physics behind these band calculations. The chapters are written in a manner understandable to scientists having no experience with band calculations. Thin film technology has become a key issue in high density
magnetic and magneto-optical recording and will be dealt with in
future volumes of the Handbook. The present volume introduces the
field with a chapter on the magnetism of ultrathin transition metal
films, describing the richness in novel magnetic phenomens that has
been encountered in the past few years in these materials. Of equal
interest are the novel magnetic phenomena observed when magnetic
moments are incorporated in a semiconducting matrix. A
comprehensive description of these materials is found in the
chapter on diluted magnetic semiconductors. A separate chapter is
devoted to the progress made in the field of heavy fermions and
valence fluctuations, emphasis being placed on the important
results obtained by means of neutron scattering. A detailed review
of the progress made in the field of rare earth based intermetallic
compounds in combination with 3d transition metals completes this
multifaceted volume.
This is the first monograph devoted to investigation of the most complex physical processes - phase transitions, critical phenomena and super-molecular organization - of soft systems, including a wide class of solutions from associated to micellar ones. Their thermophysical parameters are determined, and special attention is paid to problems of emergence and stability of the microemulsion state. The monograph also blends modern theoretical understanding and experimental results, while new methods and models for the description of several soft systems are proposed. The book is intended for scientists, engineers, graduate and doctoral students interested in the problems of the physics of soft matter.
In the last decade it has become increasingly evident that strong correla- tions between electrons are an essential and unifying factor in such diverse phenomena within solid state physics as high-temperature superconductivity, colossal magnetoresistance, the quantum Hall effect, heavy-fermion metals and Coulomb blockade in single-electron transistors. A new paradigmofnon- FermiLiquidbehaviourisalsoemergingand, inanumberofsystems, replacing the Fermi liquid, which has been the cornerstone ofthe physics of metals and superconductors for the pastdecades. In spite of major achievements, the theoretical studies and understanding of strongly-correlated electrons seems to be still in its infancy. Anomalous electron properties have been studied in some generic models of correlated electrons, such as the Hubbard and t-J models, the Anderson and Kondo impurity models, and their lattice equivalents. New insights into the behaviour of these, and related models is emerging from the introduction of powerful numerical methods to study such many-body models, including approximate techniquesofmany-body theory and exactresults inlow-andhigh-dimensional systems. Theseall showconvincingevidenceforbreakdownoftheFermiliquid concept. The Bled workshop focused on several major open questions in the theory of anomalous metals with correlated electrons. These theoretical advances were complemented by the latest experimental results in related materials, presented by leading experimentalists in the field. The main emphasis was on the following topics: - physics ofcuprates and high-temperature superconductors, - charge- and spin-ordering and fluctuations, - manganites and colossal magnetoresistance, - low-dimensional systems and transport, - Mott-Hubbard transition and infinite dimensional systems, - quantum Hall effect.
http://www.worldscientific.com/worldscibooks/10.1142/0031
Nanoscale Science and Technology summarizes six years of active research sponsored by NATO with the participation of the leading experts.The book provides an interdisciplinary view of several aspects of physics at the atomic scale. It contains an overview of the latest findings on the transport of electrons in nanowires and nanoconstrictions, the role of forces in probe microscopy, the control of structures and properties in the nanometer range, aspects of magnetization in nanometric structures, and local probes for nondestructive measurement as provided by light and metal clusters near atomic scales.
TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is the first book to provide an overview of this rapidly growing field. Vertically oriented, highly ordered TiO2 nanotube arrays are unique and easily fabricated materials with an architecture that demonstrates remarkable charge transfer as well as photocatalytic properties. This volume includes an introduction to TiO2 nanotube arrays, as well as a description of the material properties and distillation of the current research. Applications considered include gas sensing, heterojunction solar cells, water photoelectrolysis, photocatalytic CO2 reduction, as well as several biomedical applications. Written by leading researchers in the field, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is a valuable reference for chemists, materials scientists and engineers involved with renewable energy sources, biomedical engineering, and catalysis, to cite but a few examples.
This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.
The development of new high-tech applications and devices has created a seemingly insatiable demand for novel functional materials with enhanced and tailored properties. Such materials can be achieved by three-dimensional structuring on the nanoscale, giving rise to a significant enhancement of particular functional characteristics which stems from the ability to access both surface/interface and bulk properties. The highly ordered, bicontinuous double-gyroid morphology is a fascinating and particularly suitable 3D nanostructure for this purpose due to its highly accessible surface area, connectivity, narrow pore diameter distribution and superb structural stability. The presented study encompasses a wide range of modern nanotechnology techniques in a highly versatile bottom-up nanopatterning strategy that splits the fabrication process into two successive steps: the preparation of mesoporous double-gyroid templates utilizing diblock copolymer self-assembly, and their replication with a functional material employing electrochemical deposition and atomic layer deposition. The double-gyroid structured materials discussed include metals, metal oxides, and conjugated polymers, which are applied and characterized in high-performance devices, such as electrochromic displays, supercapacitors, chemical sensors and photovoltaics. This publication addresses a wide range of readers, from researchers and specialists who are professionally active in the field, to more general readers interested in chemistry, nanoscience and physics.
In this book, the author determines that a surface is itself a new material for chemical reaction, and the reaction of the surface provides additional new materials on that surface. The revelation of that peculiarity is what makes this book different from an ordinary textbook, and this new point of view will help to provide a new impetus when graduate students and researchers consider their results. The reaction of surface atoms provides additional new compounds, but these compounds cannot be detached from the surface. Some compounds are passive, but others work as catalysts. One superior feature of the surface is the dynamic cooperation of two or more different functional materials or sites on the same surface. This fact has been well established in the preferential oxidation of CO on platinum supported on a carbon nanotube with Ni-MgO at its terminal end. The Pt and Ni-MgO are perfectly separated, but these two are indispensable for the selective oxidation of CO in H2, where the H2O molecule plays a key role. The reader will understand that the complexity of catalysis is due to the complexity of the dynamic processes on the surface.
This book fills a gap in knowledge between chemistry- and physics-trained researchers about the properties of macroscopic (bulk) material. Although many good textbooks are available on solid-state (or condensed matter) physics, they generally treat simple systems such as simple metals and crystals consisting of atoms. On the other hand, textbooks on solid-state chemistry often avoid descriptions of theoretical background even at the simplest level. This book gives coherent descriptions from intermolecular interaction up to properties of condensed matter ranging from isotropic liquids to molecular crystals. By omitting details of specific systems for which comprehensive monographs are available-on liquid crystals and molecular conductors, for instance-this book highlights the effects of molecular properties, i.e., the presence of the shape and its deformation on the structure and properties of molecular systems.
http://www.worldscientific.com/worldscibooks/10.1142/0031
This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the 'surface science' approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level understanding of physical and chemical processes at surfaces, with particular emphasis on dynamical aspects. This book is a reference in the field. |
![]() ![]() You may like...
The Hebrew Priestess - Ancient and New…
Jill Hammer, Taya Shere
Hardcover
R1,134
Discovery Miles 11 340
Ulrich Bundles - From Commutative…
Laura Costa, Rosa Maria Miro-Roig, …
Hardcover
R4,143
Discovery Miles 41 430
Digital Conversion on the Way to…
Numan M. Durakbasa, M. Gunes Gencyilmaz
Hardcover
R5,828
Discovery Miles 58 280
Role of Single Board Computers (SBCs) in…
G. R. Kanagachidambaresan
Hardcover
R2,645
Discovery Miles 26 450
Sustainability Awareness and Green…
Tomayess Issa, Theodora Issa, …
Hardcover
R2,983
Discovery Miles 29 830
|