![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
This book addresses in an integrated manner all the critical aspects for building the next generation of biorecognition platforms - from biomolecular recognition to surface fabrication. The most recent strategies reported to create surface nano and micropatterns are thoroughly analyzed. This book contains descriptions of the types of molecules immobilized at surfaces that can be used for specific biorecognition, how to immobilize them, and how to control their arrangement and functionality at the surface. Small molecules, peptides, proteins and oligonucleotides are at the core of the biorecognition processes and will constitute a special part of this book. The authors include detailed information on biological processes, biomolecular screening, biosensing, diagnostic and detection devices, tissue engineering, development of biocompatible materials and biomedical devices.
This book presents an Ultrafast Low-Energy Electron Diffraction (ULEED) system that reveals ultrafast structural changes on the atomic scale. The achievable temporal resolution in the low-energy regime is improved by several orders of magnitude and has enabled the melting of a highly-sensitive, molecularly thin layer of a polymer crystal to be resolved for the first time. This new experimental approach permits time-resolved structural investigations of systems that were previously partially or totally inaccessible, including surfaces, interfaces and atomically thin films. It will be of fundamental importance for understanding the properties of nanomaterials so as to tailor their properties.
Tin (Sn) whiskers are electrically conductive, single crystal eruptions that grow from Sn film surfaces. Their high aspect ratio presents reliability problems for the electronics industry due to bridging and metal arcing, leading to malfunctions and catastrophic failures in many electronic systems (including satellite and defense sectors). Due to legislation in the EU, Japan, and the U.S., mandating a gradual shift from lead (Pb)-based to lead-free solders and board finishes, there has been a reemergence of Sn whiskers. Continuing reports of Sn whisker induced failures coupled with the lack of an industry-accepted understanding of whisker growth and/or test methods to identify whisker prone products has made pure/high Sn substitutes a risky proposition in high reliability systems. This thesis is designed to clarify and control the fundamental mechanisms that govern whisker formation. The research focuses on reproducible "laboratory" created whiskers under a variety of rigorously controlled environmental factors such as film thickness, film stress, substrate material, gas environment, and humidity exposure, which are known to play a significant role in whisker production. The ultimate question of how to impede and/or prevent whisker growth is also addressed and shows that whisker prevention is possible via hard metal capping films, which are impenetrable by whiskers.
This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gaspari-Gyorffy theories and a tabulation of the electron-ion interaction matrix elements. The evaluation of the Stoner criterion for ferromagnetism is examined and results are tabulated. This edition also contains two new appendices discussing the effects of spin-orbit interaction and a modified version of Harrison's tight-binding theory for metals which puts the theory on a quantitative basis.
Understandable by anyone concerned with crystals or solid state properties dependent on structure Presents a general system using simple notation to reveal similarities and differences among crystal structures More than 300 selected and prepared figures illustrate structures found in thousands of compounds Includes a CD-ROM with CrystalMakerTM data files to allow the reader to view and manipulate the structures
This book explores the application of external physical fields to the solidification processing of metallic alloys. Leading academics from around the world present comprehensive and critical reviews on state-of-the-art research and discuss possible future directions. Major physical fields, including electromagnetic, electric, acoustic, and thermal, are considered. In addition, the most advanced synchrotron X-ray based real-time and in-situ studies and numerical modeling methodologies are reviewed and discussed, with a special emphasis on their applications to the solidification processes. Throughout, all chapters are illustrated with both historical and very recent research cases, including typical examples of in-situ studies, modeling, and simulation. This book contains essential knowledge and information suitable for a wide audience, from undergraduate and postgraduate students to academics, practicing researchers, and engineers in materials, metallurgy, and manufacturing.
The art of chemistry is to thoroughly understand the properties of molecular compounds and materials and to be able to prepare novel compounds with p- dicted and desirable properties. The basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. The thermodynamic properties (stability, selectivity, redox potential), reactivities (bond breaking and formation, catalysis, electron transfer) and electronic properties (spectroscopy, magnetism) depend on the structure of a compound. Nevertheless, the discovery of novel molecular compounds and materials with exciting prop- ties is often and to a large extent based on serendipity. For compounds with novel and exciting properties, a thorough analysis of experimental data - state-of-the-art spectroscopy, magnetism, thermodynamic properties and/or detailed mechanistic information - combined with sophisticated electronic structure calculations is p- formed to interpret the results and fully understand the structure, properties and their interrelation. From these analyses, new models and theories may emerge, and this has led to the development of ef cient models for the design and interpre- tion of new materials and important new experiments. The chapters in this book therefore describe various fundamental aspects of structures, dynamics and physics of molecules and materials. The approaches, data and models discussed include new theoretical developments, computational studies and experimental work from molecular chemistry to biology and materials science.
During the last decade, many new concepts have been proposed for improving the performance of power rectifiers and transistors. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. Advanced Power Rectifier Concepts provides an in-depth treatment of the physics of operation of advanced power rectifiers. Analytical models for explaining the operation of all the advanced power rectifier devices will be developed. The results off numerical simulations will be provided to provide additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and provide greater insight into the device operation.
Liquid Crystals LCs] are synthetic functional materials par excellence and are to be found in many types of LCDs; LCs self-assemble into ordered, but fluid, supramolecular structures and domains; they can be oriented in large homogeneous monodomains by electric and magnetic fields, Langmuir Blodgett techniques and also by self-orientation on suitable alignment layers; they are also anisotropic with preferred axes of light absorption, emission and charge transport with excellent semiconducting properties; they are soluble in organic solvents and can be deposited as uniform thin layers on device substrates, including plastic, by low-cost deposition processes, such as spin coating and doctor blade techniques; reactive mesogens polymerisable LC monomers] can be photopatterned and fixed in position and orientation as insoluble polymer networks. LCs are increasingly being used as active components in electronic and photonic organic devices, such as Organic Light-Emitting Diodes OLEDs], Organic Field Effect Transistors OFETs], Thin Film Transistors TFTs] and photovoltaic cells PVs]. Such devices on plastic substrates represent a major component of the plastic electronics revolution. The self-assembling properties and supramolecular structures of liquid crystals can be made use of in order to improve the performance of such devices. The relationships between chemical structure, liquid crystalline behaviour and other physical properties, such as charge-transport, photoluminescence and electroluminescence are discussed and explained. For example, high carrier-mobility, polarised emission and enhanced output-coupling are identified as the key advantages of nematic and smectic liquid crystals for electroluminescence. The advantageous use of anisotropic polymer networks formed by the polymerisation of reactive mesogens RMs] in devices with multilayer capability and photopatternability is described. The anisotropic transport and high carrier mobilities of columnar liquid crystals make them promising candidates for photovoltaics and transistors. The issues in the design and processing of liquid crystalline semiconductors for such devcies with improved performance are described. The photonic properties of chiral liquid crystals and their use as mirror-less lasers are also discussed.
The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.
The book is focused on constitutive description of mechanical behaviour of engineering materials: both conventional (polycrystalline homogeneous isotropic or anisotropic metallic materials) and non-conventional (heterogeneous multicomponent anisotropic composite materials). Effective material properties at the macro-level depend on both the material microstructure (originally isotropic or anisotropic) as well as dissipative phenomena occurred on fabrication and consecutive loading phase (hardening) resulting in irreversible microstructure changes (acquired anisotropy). The material symmetry is a background and anisotropy is a core around which the book is formed. In this way a revision of classical rules of enhanced constitutive description of materials is required.
Micro-X-ray fluorescence offers the possibility for a position- sensitive and non-destructive analysis that can be used for the analysis of non-homogeneous materials and layer systems. This analytical technique has shown a dynamic development in the last 15 years and is used for the analysis of small particles, inclusions, of elemental distributions for a wide range of different applications both in research and quality control. The first experiments were performed on synchrotrons but there is a requirement for laboratory instruments which offers a fast and immediate access for analytical results. The book discuss the main components of a -XRF instrument and the different measurement modes, it gives an overview about the various instruments types, considers the special requirements for quantification of non-homogeneous materials and presents a wide range of application for single point and multi-point analysis as well as for distribution analysis in one, two and three dimensions.
Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.
Trends in Computational Nanomechanics reviews recent advances in analytical and computational modeling frameworks to describe the mechanics of materials on scales ranging from the atomistic, through the microstructure or transitional, and up to the continuum. The book presents new approaches in the theory of nanosystems, recent developments in theoretical and computational methods for studying problems in which multiple length and/or time scales must be simultaneously resolved, as well as example applications in nanomechanics. This title will be a useful tool of reference for professionals, graduates and undergraduates interested in Computational Chemistry and Physics, Materials Science, Nanotechnology.
Advances in the Theory of Atomic and Molecular Systems, is a collection of contributions presenting recent theoretical and computational developments that provide new insights into the structure, properties, and behavior of a variety of atomic and molecular systems. This volume (subtitled Dynamics, Spectroscopy, Clusters, and Nanostructures ) deals with the topics of Quantum Dynamics and Spectroscopy, Complexes and Clusters, and Nanostructures and Complex Systems . This volume is an invaluable resource for faculty, graduate students, and researchers interested in theoretical and computational chemistry and physics, physical chemistry and chemical physics, molecular spectroscopy, and related areas of science and engineering."
A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands.
Reviews in Plasmonics is a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the years progress in Plasmonics and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics.
ways in which the magnetic interaction between neutrons and magnetic moments can yield information on the magnetization densities of thin ?lms and multilayers. I commend the organizers for having organized a group of expert lecturers to present this subject in a detailed but clear fashion, as the importance of the subject deserves. Argonne, IL S. K. Sinha Contents 1 The Interaction of X-Rays (and Neutrons) with Matter . . . . . . . . . . . . . . 1 F. de Bergevin 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Generalities and De?nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 From the Scattering by an Object to the Propagation in a Medium . 14 1. 4 X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 5 X-Rays: Anisotropic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1. A Appendix: the Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2 Statistical Aspects of Wave Scattering at Rough Surfaces . . . . . . . . . . . . 59 A. Sentenac and J. Daillant 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2. 2 Description of Randomly Rough Surfaces . . . . . . . . . . . . . . . . . . . . . 60 2. 3 Description of a Surface Scattering Experiment, Coherence Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2. 4 Statistical Formulation of the Diffraction Problem . . . . . . . . . . . . . . 72 2. 5 Statistical Formulation of the Scattered Intensity Under the Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3 Specular Re?ectivity from Smooth and Rough Surfaces . . . . . . . . . . . . . 85 A. Gibaud and G. Vignaud 3. 1 The Re?ected Intensity from an Ideally Flat Surface . . . . . . . . . . . . 85 3. 2 X-Ray Re?ectivity in Strati?ed Media . . . . . . . . . . . . . . . . . . . . . . . . 98 3. 3 From Dynamical to Kinematical Theory . . . . . . . . . . . . . . . . . . . . . . 107 3. 4 In?uence of the Roughness on the Matrix Coef?cients . . . . . . . . . . 111 3. A Appendix: The Treatment of Roughness in Specular Re?ectivity . . 113 3. B Appendix: Inversion of re?ectivity data . . . . . . . . . . . . . . . . . . . . . . .
Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization, by A. Pich and W. Richtering * * * *
Grain boundaries are a main feature of crystalline materials.
They play a key role in determining the properties of materials,
especially when grain size decreases and even more so with the
current improvements of processing tools and methods that allow us
to control various elements in a polycrystal. The book is divided in three parts: This part covers a new and topical development in the field. It presents for the first time an avenue for researchers working on macroscopic aspects, to approach the scale of description of grain boundaries. Audience: graduate students, researchers and engineers in Materials Science and all those scientists pursuing grain boundary engineering in order to improvematerials performance.
This volume contains papers presented at the 8th International Conference on Solid State Physics (SSP 2004), Workshop "Mossbauer Spectroscopy of Locally Heterogeneous Systems," held in Almaty, Kazakhstan, 23 26 August 2004. It should be of interest to researchers and PhD students working or interested in recent results in the locally inhomogeneous system investigations by Mossbauer Spectroscopy and the new concepts of data evaluation of complex Mossbauer spectra.
This book presents extensive information on the mechanisms of epitaxial growth in III-nitride compounds, drawing on a state-of-the-art computational approach that combines ab initio calculations, empirical interatomic potentials, and Monte Carlo simulations to do so. It discusses important theoretical aspects of surface structures and elemental growth processes during the epitaxial growth of III-nitride compounds. In addition, it discusses advanced fundamental structural and electronic properties, surface structures, fundamental growth processes and novel behavior of thin films in III-nitride semiconductors. As such, it will appeal to all researchers, engineers and graduate students seeking detailed information on crystal growth and its application to III-nitride compounds.
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science. |
![]() ![]() You may like...
Visual Analytics for Data Scientists
Natalia Andrienko, Gennady Andrienko, …
Hardcover
R2,706
Discovery Miles 27 060
Classification Methods for Internet…
Martin Holena, Petr Pulc, …
Hardcover
R2,904
Discovery Miles 29 040
Pattern Mining with Evolutionary…
Sebastian Ventura, Jose Maria Luna
Hardcover
R3,504
Discovery Miles 35 040
Data-Driven Mining, Learning and…
Chinmay Chakraborty, Jerry Chun-Wei Lin, …
Hardcover
R4,256
Discovery Miles 42 560
A New Theory of Organizational Ecology…
Christopher M. Branson, Maureen Marra
Hardcover
R3,537
Discovery Miles 35 370
Cyber Deception - Building the…
Sushil Jajodia, V.S. Subrahmanian, …
Hardcover
R5,700
Discovery Miles 57 000
|