![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
This volume brings the reader up to date on transport phenomena, including electrical and thermal conductivity and infrared properties. In addition, electron tunneling and the characteristics and applications of films are discussed; the preparation of the necessary samples has proceeded, and a sizeable body of reproducible data has become available. Pressure effects are also presented; considerable progress has been made in relating them to the crystallographic and electronic structure of high temperature superconductors. The preparation and characterization of bulk samples is also reviewed.
Synchrotron radiation sources are now used routinely by thousands of research scientists and engineers throughout the world to perform experiments in biology, physics, materials science, chemistry and so on. The very best of these sources are based upon the use of undulator and wiggler insertion devices that can enhance the intensity of the radiation by many orders of magnitude. This book, which is part of the Oxford Series on Synchrotron Radiation, brings together both a detailed step by step description of the radiation properties from these devices as well as an explanation of the practical realization of actual devices using available magnet technologies. The book is aimed at not just the users but also the providers of synchrotron radiation. It takes the reader through the fundamental issues, and provides sufficient depth so as to be an indispensable reference to light source designers, accelerator physicists and insertion device specialists. The approach taken is to provide the reader with all of the essential information and to back this up with practical examples and illustrations wherever possible.
Written by the inventor of Raman lasers, this reference describes their developments, fundamentals, operation characteristics and application methods. It is for optoelectronic researchers, system engineers and researchers in nonlinear optics, crystal optics and metrology.
Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics into new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way, he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel Laureates and a Fields Medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. 'Stealing the Gold', Edwards' favourite caricature of the relationship between theoretical physicists and Nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century.
The theory of intermolecular forces has advanced very greatly in recent years. It has become possible to carry out accurate calculations of intermolecular forces for molecules of useful size, and to apply the results to important practical applications such as understanding protein structure and function, and predicting the structures of molecular crystals. The Theory of Intermolecular Forces sets out the mathematical techniques that are needed to describe and calculate intermolecular interactions and to handle the more elaborate mathematical models. It describes the methods that are used to calculate them, including recent developments in the use of density functional theory and symmetry-adapted perturbation theory. The use of higher-rank multipole moments to describe electrostatic interactions is explained in both Cartesian and spherical tensor formalism, and methods that avoid the multipole expansion are also discussed. Modern ab initio perturbation theory methods for the calculation of intermolecular interactions are discussed in detail, and methods for calculating properties of molecular clusters and condensed matter for comparison with experiment are surveyed.
This volume contains the collected works of the eminent chemist and physicist Lars Onsager, one of the most influential scientists of the 20th Century. The volume includes Onsager's previously unpublished PhD thesis, a biography by H C Longuet-Higgins and M E Fisher, an autobiographical commentary, selected photographs, and a list of Onsager discussion remarks in print. Onsager's scientific achievements were characterized by deep insights into the natural sciences. His two best-known accomplishments are his reciprocal relations for irreversible processes, for which he received the 1968 Nobel Prize in Chemistry, and his explicit solution of the two-dimensional Ising model, a mathematical tour de force that created a sensation when it appeared. In addition, he made significant theoretical contributions to other fields, including electrolytes, colloids, superconductivity, turbulence, ice, electrons in metals, and dielectrics. In this volume, Onsager's contributions are divided into the following fields: irreversible processes; the Ising model; electrolytes; colloids; helium II and vortex quantization; off-diagonal long-range order and flux quantization; electrons in metal; turbulence; ion recombination; fluctuation theory; dielectrics; ice and water; biology; Mathieu functions. The different fields are evaluated by leading experts. The commentators are P W Anderson, R Askey, A Chorin, C Domb, R J Donnelly, W Ebeling, J-C Justice, H N W Lekkerkerker, P Mazur, H P McKean, J F Nagle, T Odijk, A B Pippard, G Stell, G H Weiss, and C N Yang.
This volume is the latest of the "Kirchberg-Proceedings". The previous 11 International Winterschools on Electronic Properties of Novel Materials, all held in Kirchberg, Austria, were devoted to conducting polymers, high temperature superconductors, fullerenes, and carbon nanotubes. Fullerenes and nanotubes are still in the center of interest, but the topic of the school and the proceedings is molecular nanostructures in general. The organizers have attempted to treat carbon nanostructures as a special case of molecular nanostructures, which also include silicon clusters, gold clusters, vanadium oxide tubes, and many others. The Winterschool provides a platform for reviewing and discussing new developments in the field of molecular nanostructures and their applications. Materials discussed include fullerenes, fullerene-derived structures, carbonaceous nanotubes, non-carbonaceous nanotubes, layer by layer systems, molecular clusters, new phases of carbon, endohedral compounds and related materials. The book aims to give an overview of the current status of fullerenes, carbon-nanotubes and related molecular nanostructures. The majority of the contributions present the latest results of experiments and calculations conducted in the field. However, about a dozen contain some degree of instructional material which even newcomers will benefit from.
Volume 15 in this series continues the voyage of discovery started almost a decade ago. Chapter 98 adds significantly to an evaluation of systematic, experimental low-temperature studies of the ambivalent behaviours of cerium (ferromagnetism, antiferromagnetism, spin glass, superconductivity etc.) which depend upon its environment in materials. The conclusions arrived at should provide new data against which the theory can be advanced. The next chapter provides a review of rare earth carbides, emphasizing the thermodynamics, phase diagrams, crystal structures and physical properties. The binary rare earth carbides present an exceptionally wide range of compositions and structures both as solids and gas-phase molecules. Complex carbides with additional metal and non-metal components also receive attention. Metal-rich halides (i.e. compounds with an X/R ratio <2) are the subject of the next chapter. The compounds are classified according to their structure and chemical bonding characteristics and their electrical and magnetic properties are also reviewed. Chapter 101 deals with the preparation, structure, chemical and physical properties of heavy-metal fluoride glasses. Large amounts of rare earths can be added into these, and they possess a great potential for optical applications in the mid-infrared range as fiber optic glasses for communication and transmission of information, optical wave guides, fiber lasers and sensors. The following chapter explores the chemical kinetics of solvent and ligand exchange in aqueous lanthanide solutions. A wealth of tabulated information on rate and equilibrium constants is provided in textual and tabular form. Chapter 103 considers the fundamentally important reactions of the lanthanide ions with water. These interactions are discussed for both solids and solutions. The hydrated species are considered in detail for the aqueous solution, revealing the consequences of the lanthanide series sequence. The concluding chapter reviews macrocyclic complexes formed by rare earth and dioxouranium ions as templates. Synthetic trends and reactivity are considered as well as potential uses of these intriguing wrap-around structures.
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion about the replica method and its probabilistic interpretation, and also includes a short paper on multifractals. In the Simulations section, there is a series of lectures devoted to the study of quantum chromodynamics and a review paper on simulations in complex systems.The works of Giorgio Parisi have repeatedly displayed a remarkable depth of originality and innovation, and have paved the way for new research in many areas. This personal selection of his lectures and papers, complete with an original introduction by him, undoubtedly serves as a vital reference book for physicists and mathematicians working in these fields.
New materials addressed for the first time include the chapters
on minerals by Barber et al and the chapter on dislocations in
colloidal crystals by Schall and Spaepen. Moriarty et al extend the
first principles calculations of kink configurations in bcc metals
to high pressures, including the use of flexible boundary
conditions to model dilatational effects. Rabier et al clarify the
issue of glide-shuffle slip systems in diamond cubic and related
III-V compounds. Metadislocations, discussed by Feuerbacher and
Heggen, represent a new type of defect in multicomponent metal
compounds and alloys. Dislocation core structures identified in silicon at high stress Metadislocations, a new type of defect, identified and described Extension of dislocation concepts to complex minerals First observations of dislocations in colloidal crystals
'A fascinating exploration of how we learned what matter really is, and the journey matter takes from the Big Bang, through exploding stars, ultimately to you and me.' - Sean Carroll, author of Something Deeply Hidden 'If you wish to make an apple pie from scratch, you must first invent the universe.' - Carl Sagan We probably all have a vague idea of how to make an apple pie: mix flour and butter, throw in some apples and you're probably most of the way there, right? Think again. Making an apple pie from scratch requires ingredients that definitely aren't available in the supermarket, ovens that can reach temperatures of trillions of degrees, and a preparation time of 13.8 billion years. Inspired by Sagan's famous line, Harry Cliff ventures out in search of the ultimate apple pie recipe, tracing the ingredients of our universe through the hearts of dying stars and back in time to a tiny fraction of a second after our universe began. Along the way, he confronts some really big questions: What is matter really made of? How does the stuff around us escape annihilation in the fearsome heat of the Big Bang? And will we ever be able to understand the very first moments of our universe? In pursuit of answers, Cliff ventures to the largest underground research facility in the world, deep beneath Italy's Gran Sasso mountains, where scientists gaze into the heart of the Sun using the most elusive of particles, the ghostly neutrino. He visits CERN in Switzerland to explore the 'Antimatter Factory' where this stuff of science fiction is manufactured daily (and we're close to knowing whether it falls upwards). And he reveals what the latest data from the Large Hadron Collider may be telling us about the fundamental ingredients of matter. Along the way, Cliff illuminates the history of physics, chemistry, and astronomy that brought us to our present understanding of the world, while offering readers a front-row seat to one of the most dramatic intellectual journeys human beings have ever embarked on. A transfixing deep dive into origins of our world, How to Make an Apple Pie from Scratch doesn't just put the makeup of our universe under the microscope, but the awe-inspiring, improbable fact that it exists at all.
The rare earths play a unique role in science. These seventeen related elements afford a panoply of subtle variations deriving from the systematic development of their electronic configurations, allowing a test of theory with excellent resolution. In contrast they find widespread use in even the most mundane processes such as steel making, for polishing materials and gasoline cracking catalysts. In between are exotic uses such as TV screen phosphors, lasers, high strength permanent magnets and chemical probes. This multi-volume handbook covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive up-to-date, critical review of a particular segment of the field. The work offers the researcher and graduate student alike, a complete and thorough coverage of this fascinating field.
Written by the inventor of the ultrahigh Q-value resonator, this text describes innovations in high-temperature superconducting (HTS) microwave circuits and explains the fundamental principles. The book shows how to analyze, design, characterize and test the circuits created. Each chapter gives application information on: materials and characterization; transmission lines; passive components; active devices; HTS/III device hybrid circuits; high Q-value resonators; and packaging. Augmented with 202 equations and 137 illustrations, "High-Temperature Superconducting Microwave Cricuits" offers information for microwave engineers, system engineers, and material scientists. University students should find the text useful for learning about the next generation of microwave circuits.
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion about the replica method and its probabilistic interpretation, and also includes a short paper on multifractals. In the Simulations section, there is a series of lectures devoted to the study of quantum chromodynamics and a review paper on simulations in complex systems.The works of Giorgio Parisi have repeatedly displayed a remarkable depth of originality and innovation, and have paved the way for new research in many areas. This personal selection of his lectures and papers, complete with an original introduction by him, undoubtedly serves as a vital reference book for physicists and mathematicians working in these fields.
Better understand the mechanism of degradation, and gain insight into the major degradation modes of optical devices fabricated from three different systems with this book. It explains the character of defects and imperfections induced during material growth and fabrication, presents techniques for failure analysis, and describes methods for elimination of defect-generating mechanisms.
This book provides a good coverage of the recent developments and future directions in the study of dissipative systems. The primary thrust here is in exposing the reader to the frontiers of chaos, pointing out clues for further work in nonlinear science. With the aid of various types of mappings, the collapse of tori is investigated. The book contains much valuable introductory material and copious reference lists. Some notes on the historical development of the subject are interspersed in this volume.
Damage mechanics is concerned with mechanics-based analyses of microstructural events in solids responsible for changes in their response to external loading. The microstructural events can occur as cracks, voids, slipped regions, etc., with a spatial distribution within the volume of a solid. If a solid contains oriented elements in its microsctructure, e.g. fibers, the heterogeneity and asisotropy aspects create situations which form a class of problems worthy of special treatment. This book deals with such treatments with particular emphasis on application to technological composite materials. Chapter one describes the basic principles underlying both the micromechanics approach and the continuum damage mechanics approach. It also reviews the relevant statistical concepts. The next three chapters are devoted to developments of the continuum damage mechanics approach related to characterization of damage with internal variables, evolution of damage and its coupling with other inelastic effects such as plasticity. Chapter 5 describes observations of damage from notches in composite laminates and puts forward some pragmatic modelling ideas for a complex damage configuration. The next two chapters form the bulk of the micromechanics approach in this volume. The first one deals with microcracking and the other with interfacial damage in composite materials.
This book provides a pedagogical introduction to the concepts and methods of quantum field theory necessary for the study of condensed matter and ultracold atomic gases. After a thorough discussion of the basic methods of field theory and many-body physics (functional integrals, perturbation theory, Feynman diagrams, correlation functions and linear response theory, symmetries and their consequences, etc.), the book covers a wide range of topics, from electron gas and Fermi-liquid theory to superfluidity and superconductivity, magnetic instabilities in electron systems, and dynamical mean-field theory of Mott transition. The focus is on the study of model Hamiltonians, where the microscopic physics and characteristic energy scales are encoded into a few effective parameters, rather than first-principle methods which start from a realistic Hamiltonian at the microscopic level and then make material-specific predictions. The reader is expected to be familiar with elementary quantum mechanics and statistical physics, and some acquaintance with condensed-matter physics and ultracold gases may also be useful. No prior knowledge of field theory or many-body problem is required. |
![]() ![]() You may like...
Advanced Manufacturing Techniques for…
T. Rajasekaran, N Rajan, …
Hardcover
R7,211
Discovery Miles 72 110
Evolutionary Intelligence for Healthcare…
T. Ananth Kumar, R. Rajmohan, …
Hardcover
R1,439
Discovery Miles 14 390
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
![]()
|