![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
This topical volume reviews applications of continuum mechanics to systems in geophysics and the environment. Part of the text is devoted to numerical simulations and modeling. The topics covered include soil mechanics and porous media, glacier and ice dynamics, climatology and lake physics, climate change as well as numerical algorithms. The book, written by well-known experts, addresses researchers and students interested in physical aspects of our environment.
The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range - is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine and in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies. In this book we introduce and discuss one such novel approach -the radiation formed in a Crystalline Undulator -whereby electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. Under certain conditions, such a device can emit intensive spontaneous monochromatic radiation and even reach the coherence of laser light sources. Readers will be presented with the underlying fundamental physics and be familiarized with the theoretical, experimental and technological advances made during the last one and a half decades in exploring the various features of investigations into crystalline undulators. This research draws upon knowledge from many research fields - such as materials science, beam physics, the physics of radiation, solid state physics and acoustics, to name but a few. Accordingly, much care has been taken by the authors to make the book as self-contained as possible in this respect, so as to also provide a usefulintroduction to this emerging field to a broad readership of researchers and scientist with various backgrounds. This new edition has been revised and extended to take recent developments in the field into account."
This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.
The research of unitary concepts in solid state and molecular chemistry is of current interest for both chemist and physicist communities. It is clear that due to their relative simplicity, low dimensional materials have attracted most of the attention. Thus, many non-trivial problems were solved in chain systems, giving some insight into the behavior of real systems which would otherwise be untractable. The NATO Advanced Research Workshop on "Organic and Inorganic Low-Dimensional Crystalline Materials" was organized to review the most striking electronic properties exhibited by organic and inorganic sytems whose space dimensionality ranges from zero (Od) to one (1d), and to discuss related scientific and technological potentials. The initial objectives of this Workshop were, respectively: i) To research unitary concepts in solid state physics, in particular for one dimensional compounds, ii) To reinforce, through a close coupling between theory and experiment, the interplay between organic and inorganic chemistry, on the one hand, and solid state physics on the other, iii) To get a salient understanding of new low-dimensional materials showing "exotic" physical properties, in conjunction with structural features."
This book focuses on the thermophysical properties of Ge-Sb-Te alloys, which are the most widely used phase change materials, and the technique for measuring them. Describing the measuring procedure and parameter calibration in detail, it provides readers with an accurate method for determining the thermophysical properties of phase change materials and other related materials. Further, it discusses combining thermal and electrical conductivity data to analyze the conduction mechanism, allowing readers to gain an understanding of phase change materials and PCM industry simulation.
... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a), he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/: " "Oil CO/lll , IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple .... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX."
Practical applications of soft-matter dynamics are of vital
importance in material science, chemical engineering, biophysics
and biotechnology, food processing, plastic industry, micro- and
nano-system technology, and other technologies based on
non-crystalline and non-glassy materials.
This book contains most, but regrettably not all, the papers that were presented at the Advanced Research Study Institute, ASI, held at the Fantasia Hotel, Kusadasi, Turkey, July 26 - August 8, 1998. A powerful incentive to the development of vortex physics in superconductors, that has began with Abrikosov Vortices in Shubnikov's Mixed State, was realized after the discovery of the high-Tc superconductivity. Indeed, a number of the most intriguing phenomena and states of the flux line lattice are observed in high-Tc superconducting materials due to their high anisotropy, intrinsically layered crys- tal structure, extremely small coherence length and the possibility of coexistence of superconducting vortex states with high-energy thermal fluctuation. These pe- culiarities are demonstrated as the 2D flux line lattice of point-vortices (pan- cakes), Josephson vortices or strings in parallel and/or tilted magnetic fields, flux line lattice melting into vortex liquid and its freezing into vortex "solid" (e. g. , crystal-or glass-like) state. It is well known, that the main reason for conditioning of the vortex ensemble state and behavior (except the extrinsic factors, such as applied magnetic field or temperature) is a set of intrinsic/extrinsic superconduct- ing material properties caused by the crystal nature and symmetry, atoms ar- rangement, anisotropy, as well as by the spectrum of crystal defects, their dimen- sions, arrangement and density.
The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to which solid base catalysts can be utilized. The concept and significance of solid base catalysis are discussed, followed by descriptions of various methods for the characterization of solid bases, including spectroscopic methods and test reactions. The preparation and properties of base materials are presented in detail, with the two final chapters devoted to surveying the variety of reactions catalyzed by solid bases.
This thesis presents the theory of three key elements of optical spectroscopy of the electronic excitations in bilayer graphene: angle-resolved photoemission spectroscopy (ARPES), visible range Raman spectroscopy, and far-infrared (FIR) magneto-spectroscopy. Bilayer graphene (BLG) is an atomic two-dimensional crystal consisting of two honeycomb monolayers of carbon, arranged according to Bernal stacking. The unperturbed BLG has a unique band structure, which features chiral states of electrons with a characteristic Berry phase of 2$\pi$, and it has versatile properties which can be controlled by an externally applied transverse electric field and strain. It is shown in this work how ARPES of BLG can be used to obtain direct information about the chirality of electron states in the crystal. The author goes on to describe the influence of the interlayer asymmetry, which opens a gap in BLG, on ARPES and on FIR spectra in a strong magnetic field. Finally, he presents a comprehensive theory of inelastic Raman scattering resulting in the electron-hole excitations in bilayer graphene, at zero and quantizing magnetic fields. This predicts their polarization properties and peculiar selection rules in terms of the inter-Landau-level transitions.
This thesis develops the dispersive optical model into a tool that allows for the assessment of the validity of nuclear reaction models, thereby generating unambiguous removal probabilities of nucleons from valence orbits using the electron-induced proton knockout reaction. These removal probabilities document the substantial quantitative degree in which nuclei deviate from the independent-particle model description. Another outcome reported within is the prediction for the neutron distribution of Ca-40, Ca-48, and Pb-208. The neutron radii of these nuclei have direct relevance for the understanding of neutron stars and are currently the subject of delicate experiments. Unlike other approaches, the current method is consistent with all other relevant data and describes nuclei beyond the independent-particle model. Finally, a new interpretation of the saturation probabilities of infinite nuclear matter is proposed suggesting that the semi-empirical mass formula must be supplemented with a better extrapolation from nuclei to infinite matter.
The book is designed to provide graduate students and research novices with an introductory review of recent developments in the field of magneto-optics. The field encompasses many of the most important subjects in solid state physics, chemical physics and electronic engineering. The book deals with (1) optical spectroscopy of paramagnetic, antiferromagnetic, and ferromagnetic materials, (2) studies of photo-induced magnetism, and (3) their applications to opto-electronics. Many of these studies originate from those of ligand-field spectra of solids, which are considered to have contributed to advances in materials research for solid-state lasers.
Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions. The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quantization effects as the integer and fractional quantum Hall effect and the quantization of the conductance of point contacts in integer multiples of the conductance quantum'. Transport properties and tunnelling processes in various types of normal metal and superconductor tunnelling systems are treated. The statistical properties of the quantum states of electrons in spatially inhomogeneous systems, such as a random, inhomogeneous magnetic field, are investigated. Interacting systems, like the Luttinger liquid or electrons in a quantum dot, are also considered. Reviews are given of quantum blockade mechanisms for electrons that tunnel through small junctions, like the Coulomb blockade and spin blockade, the influence of dissipative coupling of charge carriers to an environment, and Andreev scattering. Coulomb interactions and quantization effects in transport through quantum dots and in double-well potentials, as well as quantum effects in the motion of vortices, as in the Aharonov-Casher effect, arediscussed. The status of the theory of the metal-insulator and superconductor-insulator phase transitions in ordered and disordered granular systems are reviewed as examples in which such quantum effects are of great importance.
The functionalization of surfaces on the nanoscale is one of the most fascinating and at the same time challenging topics in science. It is the key to tailoring catalysts, sensors, or devices for solar energy conversion, whose functional principle is based on the interaction of an active solid surface with another (liquid or gaseous) phase. As an example, planar transition metal complexes adsorbed on solid supports are promising candidates for novel heterogeneous catalysts. An important feature of these catalysts, compared to supported metal clusters, is the fact that the active sites, i. e. , the coordinated metal centers with their vacant axial coordination sites, are well de?ned and uniform. Metalloporphyrinoids are particularly suitable in this respect because they combine a structure forming element-the rigid molecular frame, which often induces long range order-with an active site, the coordinated metal ion. Its planar coordination environment leaves two axial coordination sites available for additional ligands. If adsorbed on a surface, one of these axial sites is occupied by the underlying substrate. The resulting electronic interaction with the surface can be used to tailor the electronic structure and thereby the reactivity of the metal center. The remaining site is free for the attachment of molecules (sensor functionality) and/or operates as a reaction center (single-site catalysis). Prototype examples are omnipresent in nature, where in particular metallo-tetrapyrrols play a decisive role in important biological processes, with the most prominent examples being iron porphyrins in heme, magnesium porphyrins in chlorophyll, and cobalt corrin in vitamin B12.
This thesis presents a theoretical analysis of the behavior of glasses under external perturbations, i.e. compression and shear straining. Written in a pedagogical style, it explains every facet of the problem in detail, including many crucial steps that cannot be found in the existing literature-making it particularly useful for students and as an introduction to the subject of glassy physics. In glassy systems the behavior under external compression and shear-strain is quite peculiar. Many complex phenomena are observed and grasping them fully would be a major step toward a complete theory of the glass transition. This thesis makes important advances in this direction, analyzing the behavior of glassy states in painstaking detail and reproducing it in the framework of a recently developed mean field theory for glasses that has proven extremely successful for jamming, demonstrating its predictive power in the context of metastable glassy states obtained through nonequilibrium protocols.
"Granular Gases" are diluted many-particle systems in which the mean free path of the particles is much larger than the typical particle size, and where particle collisions occur dissipatively. The dissipation of kinetic energy can lead to effects such as the formation of clusters, anomalous diffusion and characteristic shock waves to name but a few. The book is organized as follows: Part I comprises the rigorous theoretical results for the dilute limit. The detailed properties of binary collisions are described in Part II. Part III contains experimental investigations of granular gases. Large-scale behaviour as found in astrophysical systems is discussed in Part IV. Part V, finally, deals with possible generalizations for dense granular systems.
This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods, reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle waves at interfaces. It is intended for physicists, chemists, applied mathematicians and engineers, and is written in a simple direct style, with all necessary mathematics explained in the text.
Presenting the latest advances in artificial structures, this volume discusses in-depth the structure and electron transport mechanisms of quantum wells, superlattices, quantum wires, and quantum dots. It will serve as an invaluable reference and review for researchers and graduate students in solid-state physics, materials science, and electrical and electronic engineering.
The recent discovery of high-temperature superconductivity has resulted in a remarkable growth in the amount of research and the number of researchers working in this exciting field. Superconductivity is not a new phenomenon: in 1991 it will be 80 years old. Even though it was the newer discoveries which motivated us to write this book, the book itself is mainly a description of the fundamentals of the phenomenon. The book is written for a very broad audience, including students, engin eers, teachers, scientists, and others who are interested in learning about this exciting frontier of science. We have focused on the qualitative aspects, so that the reader can develop a basic understanding of the fundamental physics without getting bogged down in the details. Because of this approach, our list of refer ences is not comprehensive, and it is supplemented with a summary of additional reading consisting of monographs and selected review articles. (The articles we have referenced were either not reflected in the review articles on monographs or were milestones in the development of the field. ) In addition, some of the sections which can be skipped during the first reading have been marked with asterisks (*). Until recently, superconductivity was considered to belong to the field of low-temperature physics. This field was born, simultaneously with quantum physics, at the beginning of this century. Initially these two contemporaneous fields developed independently, but they soon became strongly coupled."
The thermal processing of materials ranges from few fem to seconds by Swift Heavy Ion Implantation to about one second using advanced Rapid Thermal Annealing. This book offers after an historical excursus selected contributions on fundamental and applied aspects of thermal processing of classical elemental semiconductors and other advanced materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Special emphasis is given on the diffusion and segregation of impurity atoms during thermal treatment. A broad range of examples describes the solid phase and/or liquid phase processing of elemental and compound semiconductors, dielectric composites and organic materials.
Fifty-one papers (and three keynote addresses) on contemporary theoretical issues and experimental techniques pertaining to the underlying factors that control heat-conduction behavior of materials. The latest findings on insulation, fluids, and low-dimensional solids and composites are reviewed as
This comprehensive book provides a full description of experimental and theoretical details and the latest theories. The expert contributions point out the direction research is currently taking, the expectations and implications, serving as useful introductory surveys.
The sub series Ternary Alloy Systems of the Landolt Boernstein New Series provides reliable and comprehensive descriptions of the materials constitution, basedo ncritical intellectual evaluationso fall data available at the time and it critically weights the different findings, also with respect to their compatibility with today's edge binary phase diagrams. Selected are ternary systems of importance to alloy development and systems which gained in the recent years otherwise scie ntific interest. In one ternary materials system, however, one may find alloys for various applications , depending on the chosen composition. Reliable phase diagrams provide scientists and engineers with basic information of eminent importance for fundamental research and for the developmentand optimization of materials. So collections of such diagrams are extremely useful, if the data on which they are based have been subjected to critical evaluation, like in these volumes. Critical evaluation means: there where contradictory information is published data and conc lusions are being analyzed, broken down to the firm facts and re interpreted in the light of all present knowledge. Depending on the information available this can be a very difficult task to achieve. Criticaleval uations establish descripti ons of reliably known phase configurations and related data.
This book is the second in a series of scientific textbooks designed to cover advances in selected research fields from a basic and general viewpoint, so that only limited knowledge is required to understand the significance of recent developments. Further assistance for the non-specialist is provided by the summary of abstracts in Part 2, which includes many of the major papers published in the research field. Crystal Growth of Semiconductor Materials has been the subject of numerous books and reviews and the fundamental principles are now well-established. We are concerned chiefly with the deposition of atoms onto a suitable surface - crystal growth - and the generation of faults in the atomic structure during growth and subsequent cooling to room temperature - crystal defect structure. In this book I have attempted to show that whilst the fundamentals of these processes are relatively simple, the complexities of the interactions involved and the individuality of different materials systems and growth processes have ensured that experimentally verifiable predictions from scientific principles have met with only limited success - good crystal growth remains an art. However, recent advances, which include the reduction of growth temperatures, the reduction or elimination of reactant transport variables and the use of better-controlled energy sources to promote specific reactions, are leading to simplified growth systems. |
![]() ![]() You may like...
Handbook of Basic and Clinical Ocular…
Sunny E. Ohia, Naj Sharif
Paperback
R4,223
Discovery Miles 42 230
The German-Speaking World - A Practical…
Patrick Stevenson, Kristine Horner, …
Paperback
R1,531
Discovery Miles 15 310
|