![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
Volume 9 of the "Handbook of Magnetic Materials" has a dual purpose, as do the preceding volumes in the series. As a textbook it is intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. To this dual purpose, Volume 9 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and material science. Chapter one presents a general account of the magnetism of heavy-fermion systems. Two novel experimental techniques are described in chapters two and five. Chapter two deals with muon spin rotation and chapter five gives an account of the possibilities offered by photon beam spectroscopy. In both chapters it is shown how these sophisticated experimental methods can be used to obtain experimental information not easily obtainable by conventional experimental methods. Chapter three deals with interstitially modified intermetallic compounds of rare earth and 3d elements. Finally chapter four is concerned with thermodynamic approach to phase transitions and shows how the understanding and description of these magnetic phase transitions can be considerably enriched.
This is the second in a series of "International Workshops on Electron Correlations and Materials Properties. " The aim of this series of workshops is to provide a periodic (triennial) and in-depth assessment of advances in the study and understanding of the effects that electron-electron interactions in solids have on the determination of measurable properties of materials. The workshop is structured to include exposure to experimental work, to phenomenology, and to ab initio theory. Since correlation effects are pervasive the workshop aims to concentrate on the identification of promising developing methodology, experimental and theoretical, addressing the most critical frontier issues of electron correlations on the properties of materials. This series of workshops is distinguished from other topical meetings and conferences in that it strongly promotes an interdisciplinary approach to the study of correlations, involving the fields of quantum chemistry, physics, and materials science. The First Workshop was held June 28-July 3, 1998, and a proceedings of the workshop was published by KluwerlPlenum. The Second Workshop was held June 24- 29,2001, and this volume contains the proceedings of that scientific meeting. Through the publications of proceedings, the workshop attempts to disseminate the information gathered during the discussions held at the Workshop to the wider scientific community, and to establish a record of advances in the field.
Nature is the best example of a system functioning on the nanometer scale, wherethematerialsinvolved,energyconsumption,anddatahandlingareop- mized. Opening the doors to the nanoworld, the emergence of the scanning tunneling microscope in 1982 and the atomic force microscope in 1986 led to a shift of paradigmin the understanding and perception of matter at its most fundamentallevel. As aconsequence,newrevolutionaryconceptsstimulateda number of new technologies. The current volume Scanning Probe Methods in Nanoscience and Nanotechnology showsthat these methods arestill making a tremendous impact on many disciplines that range from fundamental physics andchemistry throughinformationtechnology,spintronics,quantumcomp- ing, and molecular electronics, all the way to life sciences. Indeed, over 6,000 AFM-related papers were published in 2008 alone, bringing the total to more than 70,000 since its invention, according to the web of science, and the STM has inspired a total of 20,000 papers. There are also more than 500 patents related to the various forms of scanning probe microscopes. Commerciali- tion of the technology started at the end of the 1980s, and approximately 12,000 commercial systems have been sold so far to customers in areas as diverse as fundamental research,the car industry, and even the fashion ind- try. There are also a signi?cant number of home-built systems in operation. Some60-80companiesareinvolvedinmanufacturingSPMandrelatedinst- ments. Indeed, not even the sky seems to be the limit for AFM technology. TheRosettamissiontocomet67Plaunchedbythe EuropeanSpaceAgencyin 2004 includes an AFM in its MIDAS (Micro-Imaging Dust Analysis System) instrument.
Layered crystals, characterized by a quasi-two-dimensional character of certain physical properties, play an interesting role in surface science. First of all they provide excellent inert substrates for epitaxial deposition and physisorption studies. The surfaces of layered crystals, however, are interesting in their own right because they make a relevant class of low-dimensional phenomena accessible to surface probes. Change density waves, incommensurate structures, phonon anomalies and high Tc superconductivity are well known examples. This book collects a series of review articles written by outstanding specialists on the structural assessment and spectroscopy of layered structures with surface-sensitive probes such as scanning microscopy and helium atom scattering, the theoretical analysis of their electronic and vibrational surface states, and the investigation of physisorbed overlayers.
The conceptofspontaneous symmetry breaking plays a fundamental role in contemporary physics. It is essential for the description of degenerate ground states, massless modes, and topological defects. Examples are abundant in condensed matter physics, atomic and particle physics, as well as in astro physics and cosmology. In fact, spontaneous symmetry breaking can be re garded as a cornerstone ofa whole branch ofphysics which intersects the above mentioned traditionally distinct fields. In the year 2000 the European Science Foundation (ESF) started the Pro gramme "Cosmology in the Laboratory" (COSLAB), with the goal to search for and to develop analogies betweencondensed matterphysics, particle physics, and cosmology. Not surprisingly, spontaneous symmetry breaking is among the most useful notions in that endeavour. It has been decided that in the sec ond year of the Programme a School should be held in order to work out and deliver to a wide audience of students synthetic overviews of achievements and of current research topics of COSLAB. This idea has been supported by the Scientific and Environmental Affairs Division of NATO by including the School in the renowned series of its Advanced Study Institutes. The School, entitled" Patterns of Symmetry Breaking," was held in Cracow during 16-28 September 2002. It gathered 17 lecturers and about 60 students. The present volume contains notes ofmost of the lectures from that School. We hope that of the physics of spon it will convey to the reader the breadth and the beauty taneous symmetry breaking."
Although exploratory and developmental activity in electron beam testing (EBT) 25 years, it was not had already been in existence in research laboratories for over until the beginning of the 1980s that it was taken up seriously as a technique for integrated circuit (IC) testing. While ICs were being fabricated on design rules of several microns, the mechanical ne edle probe served quite adequately for internal chip probing. This scenario changed with growing device complexity and shrinking geometries, prompting IC manufacturers to take note ofthis new testing technology. It required several more years and considerable investment by electron beam tester manufacturers, however, to co me up with user-friendly automated systems that were acceptable to IC test engineers. These intervening years witnessed intense activity in the development of instrumentation, testing techniques, and system automation, as evidenced by the proliferation of technical papers presented at conferences. With the shift of interest toward applications, the technology may now be considered as having come of age.
Nano-science looks at nano-interfaces and nano-junctions, atomic and molecular manipulation of adsorbates, properties of self assembled films and quantum transport in nano-structures. Understanding of these phenomena at the nano-scale is of great importance for both science and technology. Computations for the Nano-Scale is the first book to present the state of the art of the theory of nano-science and some related experiments. It assembles contributions from leading experts who met for a NATO Workshop in Aspet, France, October 12--16, 1992.
Intended for researchers and students in physics, chemistry and materials science, this work aims to provide the necessary background information and sufficient mathematical and physical detail to study research literature in nuclear magnetic resonance studies of liquid crystals. This second edition, updated throughout, incorporates many new references, corrects typographical errors, and includes new mathematical appendices.
This book presents contributions to the topics of materials for energy infrastructure with a focus on data and informatics for materials. This spectrum of topics has been chosen because challenges in terms of materials are identified to lie in transport and storage of energy, adequate supply of food and water, well-working infrastructure, materials for medical application and health, efficient use of scarce resources or elements and alternate materials solutions as well as recycling. The contributions were invited at the 4th WMRIF Young Materials Scientist Workshop held at the National Institute for Standards and Technology (NIST) in Boulder, Colorado, USA during September 8-10, 2014.
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.
This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter.
The book focuses on the main physical ideas and mathematical methods of the microscopic theory of fluids, starting with the basic principles of statistical mechanics. The detailed derivation of results is accompanied by explanation of their physical meaning. The same approach refers to several specialized topics of the liquid state, most of which are recent developments, such as: a perturbation approach to the surface tension, an algebraic perturbation theory of polar nonpolarizable fluids and ferrocolloids, a semi-phenomenological theory of the Tolman length and some others. The book addresses researchers as well as graduate students in physics and chemistry with research interests in the statistical physics of fluids.
This symposium focused on new superconductors, electronics, magnet technology, energy and new applications. Recent discoveries in HTc, with transition temperatures over 90 K, have spawned a search for practical new applications. These applications extend from current uses such as that of the medical MRI to future applications, represented by research on new high-temperature materials. They span from microcircuit applications to the proposed SMES and fusion reactor applications.
Solid-State Imaging with Charge-Coupled Devices covers the complete imaging chain: from the CCD's fundamentals to the applications. The book is divided into four main parts: the first deals with the basics of the charge-coupled devices in general. The second explains the imaging concepts in close relation to the classical television application. Part three goes into detail on new developments in the solid-state imaging world (light sensitivity, noise, device architectures), and part four rounds off the discussion with a variety of applications and the imager technology. The book is a reference work intended for all who deal with one or more aspects of solid- state imaging: the educational, scientific and industrial world. Graduates, undergraduates, engineers and technicians interested in the physics of solid-state imagers will find the answers to their imaging questions. Since each chapter concludes with a short section Worth Memorizing', reading this short summary allows readers to continue their reading without missing the main message from the previous section.
The idea of writing this book orIgmates from a suggestion of Bernard Sapoval: "Why don't you write it?" he asked. "Coulomb screening is a problem that everybody encounters in many different contexts, and there is no textbook that gathers the various aspects ofthe subject. " The content ofthe book, in a shorter form, was first taught for four years as a course in Dipl6me d'Etudes Approfondies Sciences des Materiaux, headed by Prof. J. -F. Petroff, at Paris VI University. The present extended version was written after discussions with Alia Margolina-Litvin. An essential feature of screening is its role in many different scientific areas. For that reason, the book is intended for use by a multidisciplinary readership. Reading it requires only a basic knowledge ofelectromagnetism, elementary quantum mechanics, and thermal physics. The spirit of the pre sentation is "simplicity first": new concepts (e. g. , dielectric function) are first introduced in their most elementary form and are progressively extended to more generality. The book stays at a basic level, and additional abstract developments that might have been included have been either omitted, rele gated to an appendix, or summarized in a qualitative manner. Apart from these restrictions, care has been taken to keep the presentation as rigorous as possible: the topics addressed are dealt with quantitatively, the results are given in mathematical form, and the interested reader should be able to fol low the algebra all the way through.
The study of the spontaneous formation of nanostructures in single crystals is rapidly developing into a dominant field of research in the subject area known as strongly correlated electrons. The structures appear to originate in the competition of phases. This book addresses nanoscale phase separation, focusing on the manganese oxides with colossal magnetoresistance (CMR). The text argues that nanostructures are at the heart of the CMR phenomenon. Other compounds are also addressed, such as high-temperature superconductors, where similar nanostructures exist. Brief contributions by distinguished researchers are also included. The book contains updated information directed at experts, both theorists and experimentalists. Beginning graduate students or postdocs will also benefit from the introductory material of the early chapters, and the book can be used as a reference for an advanced graduate course.
Concisely and clearly written, this book provides a self-contained introduction to the basic concepts of fractals and demonstrates their use in a range of topics in condensed matter physics and statistical mechanics. The first part outlines different fractal structures observed in condensed matter. The main part of the book is dedicated to the dynamical behaviour of fractal structures, including anomalous and percolating systems. The concept of multifractals is illustrated for the metal-insulator quantum phase transition. The authors emphasize the unified description of these different dynamic problems, thus making the book accessible to readers who are new to the field.
The field of quantum and molecular simulations has experienced strong growth since the time of the early software packages. A recent study, showed a large increase in the number of people publishing papers based on ab initio methods from about 3,000 in 1991 to roughly 20,000 in 2009, with particularly strong growth in East Asia. Looking to the future, the question remains as to how these methods can be further integrated into the R&D value chain, bridging the gap from engineering to manufacturing. Using successful case studies as a framework, Industrial Applications of Molecular Simulations demonstrates the capability of molecular modeling to tackle problems of industrial relevance. This book presents a wide range of various modeling techniques, including methods based on quantum or classical mechanics, molecular dynamics, Monte Carlo simulations, etc. It also explores a wide range of materials, from soft materials such as polymeric blends widely used in the chemical industry to hard or inorganic materials such as glasses and alumina. Features
In The New Superconductors, Frank J. Owens and Charles P. Poole, Jr., offer a descriptive, non-mathematical presentation of the latest superconductors and their properties for the non-specialist. Highlights of this up-to-date text include chapters on superfluidity, the latest copper oxide types, fullerenes, and prospects for future research. The book also features many examples of commercial applications; an extensive glossary that defines superconductivity terms in clear language; and a supplementary list of readings for the interested lay reader.
It is widely recognized that an understanding of the optical pro perties of matter will give a great deal of important information re levant to the fundamental physical properties. This is especially true in semiconductor physics for which, due to the intrinsic low screening of these materials, the optical response is quite rich. Their spectra reflect indeed as well electronic as spin or phonon transitions. This is also in the semiconductor field that artificial structures have been recently developed, showing for the first time specific physical properties related to the low dimentionality of the electronic and vi bronic properties: with this respect the quantum and fractional quan tum Hall effects are among the most well known aspects. The associated reduced screening is also a clear manifestation of these aspects and as such favors new optical properties or at least significantly enhan ces some of them. For all these reasons, it appeared necessary to try to review in a global way what the optical investigation has brought today about the understanding of the physics of semiconductors. This volume collects the papers presented at the NATO Advanced study Inst i tut e on "Optical Properties of Semiconductors" held at the Ettore Majorana Centre, Erice, Sicily on March 9th to 20th, 1992. This school brought together 70 scientists active in research related to optical properties of semiconductors. There were 12 lecturers who pro vided the main contributions ."
In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL experiments, non-crystalline particles scattered on thin support membranes and flash-cooled can be used to efficiently increase the rate of XFEL pulses. The rate, which depends on the number density of scattered particles and the size of X-ray beams, is currently 20-90%, probably the world record in XFEL-CXDI experiments. The experiment setups and results are introduced in this book. The author has also developed software suitable for efficiently processing of diffraction patterns and retrieving electron density maps of specimen particles based on the diffraction theory used in CXDI.
During the past fifteen years there has been a dramatic increase in the number of different surfaces whose structures have been determined experimentally. For example, whereas in 1979 there were only 25 recorded adsorption structures, to date there are more than 250. This volume is therefore a timely review of the state-of-the-art in this dynamic field. Chapter one contains a compilation of the structural data base on surfaces within a series of tables that allows direct comparison of structural parameters for related systems. Experimental structural trends amongst both clean surfaces and adsorbate systems are highlighted and discussed. The next chapter outlines the successes of local density functional theory in predicting the relaxations and reconstructions of clean metal and semiconductor surfaces, and the behaviour of adsorbates such as hydrogen, oxygen and alkali elements on metal surfaces, thereby explaining some of the experimental trends observed within the database. These "ab initio" density functional calculations are of ground state properties at the absolute zero of temperature. Chapter three provides an introduction to finite temperature effects in a pedagogical review of current statistical mechanical treatments of phase transitions at surfaces, many of which display the prominent role of fluctuations or non-mean field behaviour. The final chapter discusses the relationship of the reactivity of a surface to its morphology and composition, which is particularly relevant to a fundamental understanding of catalysis.
This book is based mostly on the reports presented at the XVth International lahn-Teller Symposium on Vibronic Interactions in Crystals and Molecules and NATO Advanced Research Workshop Colossal Magnetoresistance and Vibronic Interactions that took place at Boston on August 16-22 of the year 2000. This is the first time the Symposium took place in the USA where recently the giant splash of the attention to the 1 ahn-Teller effect occurred. This tremendous interest to the field all over the world is reflected not only in the numerous publications in many American and European 10urnals, but of the leading scientists from additionally in the Symposium's participation the well known Universities, National Laboratories and industrial companies, which was the largest in the history of the Symposium. The renaissance of the 1ahn-Teller physics is closely related to the three fundamental discoveries in science. The most significant among them is the discovery of high-Tc superconductivity by K. -A. Muller and G. Bednorz, for whom the "1ahn-Teller idea" was the motivation in their search. The result of this search is well known - a wide spectrum of the 1ahn-Teller ion based materials with Tc between 24K and 135K were found. The second discovery is the existence of a new polymorph of carbon - the C60. The microscopic analysis of all physical, chemical and biological properties of the buckyballs is based on 1ahn-Teller type of interactions. The third is colossal magnetoresistance.
This book features selected works presented in the 28th National Conference on Condensed Matter Physics, "Condensed Matter Days (CMDAYS) 2020", which was held from December 11th to 13th December 2020. The conference brought together seasoned experts and upcoming researchers from all over India to share their research and ideas in the field of condensed matter physics. This book is a glimpse into the works and ideas that were discussed and presented at the conference. It includes works on diverse fields from nanomaterials to fuel cells, photocatalysis to ferromagnetism, application studies to fundamental studies.
Nanophase Materials is the first and, as yet, the only comprehensive book published in this new and exciting area of materials science. It gives a broad overview of the revolutionary new field of nanophase materials; a view which spans the materials, physics, and chemistry research communities at a tutorial level that is suitable for advanced undergraduates, graduate students, postdoctoral researchers, and experts or would-be experts in the science of nanostructured materials. The articles are authored by many of the world's most prominent scientists in this field. The book covers the diverse methods for synthesizing nanophase materials, a variety of subsequent processing methodologies, what is known about the structures of these materials on various length scales from atomic to macroscopic, and the properties of these unique and novel materials. The materials properties covered are mechanical, electronic, optical, and magnetic and hence span a wide range of important new opportunities for technological applications. |
![]() ![]() You may like...
The Immune-Neuroendocrine Circuitry…
I. Berczi, Andor Szentivanyi
Hardcover
R4,524
Discovery Miles 45 240
Nonlinear Modeling - Advanced Black-Box…
Johan A.K. Suykens, Joos P.L. Vandewalle
Hardcover
R4,507
Discovery Miles 45 070
|