![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
The physics of condensed matter, in contrast to quantum physics or cosmology, is not traditionally associated with deep philosophical questions. However, as science - largely thanks to more powerful computers - becomes capable of analysing and modelling ever more complex many-body systems, basic questions of philosophical relevance arise. Questions about the emergence of structure, the nature of cooperative behaviour, the implications of the second law, the quantum-classical transition and many other issues. This book is a collection of essays by leading physicists and philosophers. Each investigates one or more of these issues, making use of examples from modern condensed matter research. Physicists and philosophers alike will find surprising and stimulating ideas in these pages.
The rapid increase in capabilities at neutron and x-ray scattering sources has resulted in a wealth of highly accurate data on liquids, allowing for the testing of sophisticated models pertinent to the microscopic dynamics. This book, written with the experimentalist in the field of liquids in mind, is a practical guide on how to infer the maximum amount of information from the data using a minimum number of parameters, employing a fail-safe framework that ensures that pitfalls are avoided and that small differences between various liquids can be uncovered. Also, it details excitations for a range of liquids, covering simple fluids, colloids, mixtures, metals and superfluids. Results are interpreted in words rather than in equations, bringing to the fore new links between these fluids and between spontaneous fluctuations involving thousands of atoms down to those involving just a few. By providing a review of scattering results in the field of liquids, and placing various liquids in context, the book gives an overview for the graduate student and the postdoc entering the field, and a refresher course, based on modern results, for established experimentalists. Moreover, in re-establishing the connection between the large-scale properties of liquids, and their underlying collision sequences, the book directly ties experimental results to the most important open questions in the field. It is hoped that the book will inspire theorists to take up the challenges it poses.
Growth of Crystals, Volume 21 presents a survey, with detailed analysis, of the scientific and technological approaches, and results obtained, by leading Russian crystal growth specialists from the late 1990's to date. The volume contains 16 reviewed chapters on various aspects of crystal and crystalline film growth from various phases (vapour, solution, liquid and solid). Both fundamental aspects, e.g. growth kinetics and mechanisms, and applied aspects, e.g. preparation of technically important materials in single-crystalline forms, are covered. A large portion of the volume is devoted to film growth, including film growth from eutectic melt, from amorphous solid state, kinetics of lateral epitaxy and film growth on specially structured substrates. An important chapter in this section covers heteroepitaxy of non-isovalent A3B5 semiconductor compounds, which have important applications in the field of photonics. The volume also includes a detailed analysis of the structural aspects of a broad range of laser crystals, information that is invaluable for successfully growing perfect, laser-effective, single crystals.
The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data. The second edition surveys the last achievements in the field of wetting of real surfaces, including new chapters devoted to the wetting of lubricated and gradient surfaces and reactive wetting, which have seen the rapid progress in the last decade. Additional reading, surveying the progress across the entire field of wetting of real surfaces, is suggested to the reader. Contents What is surface tension? Wetting of ideal surfaces Contact angle hysteresis Dynamics of wetting Wetting of rough and chemically heterogeneous surfaces: the Wenzel and Cassie Models Superhydrophobicity, superhydrophilicity, and the rose petal effect Wetting transitions on rough surfaces Electrowetting and wetting in the presence of external fields Nonstick droplets Wetting of lubricated surfaces
This thesis targets molecular or organic spintronics and more particularly the spin polarization tailoring opportunities that arise from the ferromagnetic metal/molecule hybridization at interfaces: the new concept of spinterface. Molecular or organic spintronics is an emerging research field at the frontier between organic chemistry and spintronics. The manuscript is divided into three parts, the first of which introduces the basic concepts of spintronics and advantages that molecules can bring to this field. The state of the art on organic and molecular spintronics is also presented, with a special emphasis on the physics and experimental evidence for spinterfaces. The book's second and third parts are dedicated to the two main experimental topics investigated in the thesis: Self-Assembled Monolayers (SAMs) and Organic Semiconductors (OSCs). The study of SAMs-based magnetic tunnel nanojunctions reveals the potential to modulate the properties of such devices "at will," since each part of the molecule can be tuned independently like a "LEGO" building block. The study of Alq3-based spin valves reveals magnetoresistance effects at room temperature and is aimed at understanding the respective roles played by the two interfaces. Through the development of these systems, we demonstrate their potential for spintronics and provide a solid foundation for spin polarization engineering at the molecular level.
Raman scattering is now being applied with increasing success to a wide range of practical problems at the cutting edge of materials science. The purpose of this book is to make Raman spectroscopy understandable to the non-specialist and thus to bring it into the mainstream of routine materials characterization. The book is pedagogical in approach and focuses on technologically important condensed-matter systems in which the specific use of Raman spectroscopy yields new and useful information. Included are chapters on instrumentation, bulk semiconductors and alloys, heterostructures, high-Tc superconductors, catalysts, carbon-based materials, wide-gap and super-hard materials, and polymers.
This monograph deals with ion-induced electron emission from crystalline solids bombarded by fast ions. During the past decade, electron spectroscopy combined with the ion channeling technique has revealed various "messages" about ion-solid and electron-solid interactions that are carried by the emitted electrons. In addition, the book describes the underlying physics and experimental techniques. It will provide useful information for students and scientists working in ion-beam-based research and development in various areas of atomic and solid-state physics, materials science, and surface science.
During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to reveal the intimate structure of samples with high accuracy but on much smaller samples than have ever been investigated by X-ray diffraction. As a tribute to these tremendous recent achievements, this NATO Advanced Study Institute was devoted to the novel approaches of electron crystallography for structure determination of nanosized materials.
The characteristics of electrical contacts have long attracted the attention of researchers since these contacts are used in every electrical and electronic device. Earlier studies generally considered electrical contacts of large dimensions, having regions of current concentration with diameters substantially larger than the characteristic dimensions of the material: the interatomic distance, the mean free path for electrons, the coherence length in the superconducting state, etc. [110]. The development of microelectronics presented to scientists and engineers the task of studying the characteristics of electrical contacts with ultra-small dimensions. Characteristics of point contacts such as mechanical stability under continuous current loads, the magnitudes of electrical fluctuations, inherent sensitivity in radio devices and nonlinear characteristics in connection with electromagnetic radiation can not be understood and altered in the required way without knowledge of the physical processes occurring in contacts. Until recently it was thought that the electrical conductivity of contacts with direct conductance (without tunneling or semiconducting barriers) obeyed Ohm's law. Nonlinearities of the current-voltage characteristics were explained by joule heating of the metal in the region of the contact. However, studies of the current-voltage characteristics of metallic point contacts at low (liquid helium) temperatures [142] showed that heating effects were negligible in many cases and the nonlinear characteristics under these conditions were observed to take the form of the energy dependent probability of inelastic electron scattering, induced by various mechanisms.
The concept of reciprocal space is over 100 years old, and has been of particular use by crystallographers in order to understand the patterns of spots when x-rays are diffracted by crystals. However, it has a much more general use, especially in the physics of the solid state. In order to understand what it is, how to construct it and how to make use of it, it is first necessary to start with the so-called real or direct space and then show how reciprocal space is related to it. Real space describes the objects we see around us, especially with regards to crystals, their physical shapes and symmetries and the arrangements of atoms within: the so-called crystal structure. Reciprocal space on the other hand deals with the crystals as seen through their diffraction images. Indeed, crystallographers are accustomed to working backwards from the diffraction images to the crystal structures, which we call crystal structure solution. In solid state physics, one usually works the other way, starting with reciprocal space to explain various solid-state properties, such as thermal and electrical phenomena. In this book, I start with the crystallographer's point of view of real and reciprocal space and then proceed to develop this in a form suitable for physics applications. Note that while for the crystallographer reciprocal space is a handy means of dealing with diffraction, for the solid-state physicist it is thought of as a way to describe the formation and motion of waves, in which case the physicist thinks of reciprocal space in terms of momentum or wave-vector k-space. This is because, for periodic structures, a characteristic of normal crystals, elementary quantum excitations, e.g. phonons and electrons, can be described both as particles and waves. The treatment given here, will be by necessity brief, but I would hope that this will suffice to lead the reader to build upon the concepts described. I have tried to write this book in a suitable form for both undergraduate and graduate students of what today we call "condensed matter physics."
This book develops the subject from the basic principles of quantum mechanics. The emphasis is on a single statement of the ideas underlying the various approximations that have to be used and care is taken to separate sound arguments from conjecture. This book is written for the student of theoretical physics who wants to work in the field of solids and for the experimenter with a knowledge of quantum theory who is not content to take other people's arguments for granted. The treatment covers the electron theory of metals as well as the dynamics of crystals, including the author's work on the thermal conductivity of crystals which has been previously published in English.
This book presents the general concepts of self-organized spatio-temporal ordering processes. These concepts are demonstrated via prototypical examples of recent advances in materials science. Particular emphasis is on nano scale soft matter in physics, chemistry, biology and biomedicine. The questions addressed embrace a broad spectrum of complex nonlinear phenomena, ranging from self-assembling near the thermodynamical equilibrium to dissipative structure formation far from equilibrium. Their mutual interplay gives rise to increasing degrees of hierarchical order. Analogues are pointed out, differences characterized and efforts are made to reveal common features in the mechanistic description of those phenomena.
This Thesis in biological physics has two components, describing the use of X-ray scattering techniques to study the structure of two different stacked lipid membrane systems. The first part focuses on the interaction between a short 11-mer peptide, Tat, which is part of the Tat protein in the HIV-1 virus. Although highly positively charged, the Tat protein has been shown to translocate through hydrocarbon lipid bilayers easily, without requiring the cell's energy, which is counter to its Born self-energy. In this work Tat's location in the headgroup region was demonstrated using a combined X-ray scattering and molecular dynamics approach. Bilayer thinning was observed as well as softening of different membrane mimics due to Tat. It was concluded that Tat's headgroup location, which increases the area/lipid, and its bilayer softening likely reduce the energy barrier for passive translocation. The second part is a rigorous investigation of an enigmatic phase in the phase diagram of the lipid dimyristoylphosphatidylcholine (DMPC). The ripple phase has fascinated many researchers in condensed matter physics and physical chemistry as an example of periodically modulated phases, with many theoretical and simulation papers published. Despite systematic studies over the past three decades, molecular details of the structure were still lacking. By obtaining the highest resolution X-ray data so far, this work revealed the complex nature of the chain packing, as well as confirming that the major side is thicker than the minor side of the saw-tooth ripple structure. The new model shows that the chains in the major arm are tilted with respect to the bilayer normal and that the chains in the minor arm are slightly more disordered than all-trans gel-phase chains, i.e., the chains in the minor arm are more fluid-like. This work provides the highest resolution X-ray structure of the ripple phase to-date.
Studies on the electronic properties of conjugated polymers and low molecular weight organic solids have been of increasing interest in recent years. This book is organized into two parts dedicated to these two classes of materials. For each part a general introductory review provides background knowledge of the language and of the main points required for understanding the book's contents. The reviews that follow provide a more complete understanding of the underlying physics of the materials through discussion of the interconnected topics. Theoretical concepts, models and methods are overviewed; this is used to support the explanation of the physical and chemical properties of these materials. The presentation of selected aspects of experimental research greatly contributes to the basic understanding of organic electronic materials.
This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.
This volume represents the written account of the NATO Advanced Study Institute "Lower-Dimensional Systems and Molecular Electronics" held at Hotel Spetses, Spetses Island, Greece from 12 June to 23 June 1989. The goal of the Institute was to demonstrate the breadth of chemical and physical knowledge that has been acquired in the last 20 years in inorganic and organic crystals, polymers, and thin films, which exhibit phenomena of reduced dimensionality. The interest in these systems started in the late 1960's with lower-dimensional inorganic conductors, in the early 1970's with quasi-one-dimensional crystalline organic conductors. which by 1979 led to the first organic superconductors, and, in 1977, to the fITSt conducting polymers. The study of monolayer films (Langmuir-Blodgett films) had progressed since the 1930's, but reached a great upsurge in . the early 1980's. The pursuit of non-linear optical phenomena became increasingly popular in the early 1980's, as the attention turned from inorganic crystals to organic films and polymers. And in the last few years the term "moleculw' electronics" has gained ever-increasing acceptance, although it is used in several contexts. We now have organic superconductors with critical temperatures in excess of 10 K, conducting polymers that are soluble and processable, and used commercially; we have films of a few monolayers that have high in-plane electrical conductivity, and polymers that show great promise in photonics; we even have a few devices that function almost at the molecular level.
Based on courses given at the Ecole Polytechnique in France, this book covers not only the fundamental physics of semiconductors, but also discusses the operation of electronic and optical devices based on semiconductors. It is aimed at students with a good background in mathematics and physics, and is equally suited for graduate-level courses in condensed-matter physics as for self-study by engineers interested in a basic understanding of semiconductor devices.
Since the discovery of the giant magnetoresistance (GMR) effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. Recent progress in the physics of magnetism and the application of spin current has progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book is intended to provide an introduction and guide to the new physics and applications of spin current. The emphasis is placed on the interaction between spin and charge currents in magnetic nanostructures.
This book provides an introduction to conformal field theory and a review of its applications to critical phenomena in condensed-matter systems. After reviewing simple phase transitions and explaining the foundations of conformal invariance and the algebraic methods required, it proceeds to the explicit calculation of four-point correlators. Numerical methods for matrix diagonalization are described as well as finite-size scaling techniques and their conformal extensions. Many exercises are included. Applications treat the Ising, Potts, chiral Potts, Yang-Lee, percolation and XY models, the XXZ chain, linear polymers, tricritical points, conformal turbulence, surface criticality and profiles, defect lines and aperiodically modulated systems, persistent currents and dynamical scaling. The vicinity of the critical point is studied culminating in the exact solution of the two-dimensional Ising model at the critical temperature in a magnetic field. Relevant experimental results are reviewed.
The NATO sponsored Advanced Research Workshop on "Concepts in Electron Correlation" took place on the Croatian island of Hvar during the period from the 29th of September to the 3rd of October, 2002. The topic of electron correlation is a fundamental one in the field of condensed matter, and one that is being very actively studied both experimentally and theoretically at the present time. The manifestations of electron cor relation are diverse, and play an important role in systems ranging from high temperature superconductors, heavy fermions, manganite compounds with colossal magnetoresistance, transition metal compounds with metal insulator transitions, to mesoscopic systems and quantum dots. The aim of the workshop was to provide an opportunity for a dialogue between exper imentalists and theoreticians to assess the current state of understanding, and to set an agenda for future work. There was also a follow-up workshop on the same topic where the presentations included more background and introductory material for younger researchers in the field. The papers presented in these proceedings clearly demonstrate the di versity of current research on electron correlation. They show that real progress is being made in characterising systems experimentally and in developing theoretical approaches for a quantitative comparison with ex periment. The more one learns, however, the more there is to understand, and many of the contributions help to map out the territory which has yet to be explored. We hope that the articles in this volume will be a stimulus for such future work."
of progress has been made in the development of In the last twenty years a great amount new magnetic materials. Permanent magnets have progressed from the AlNiCo's (with (BH)m-8 MGOe) to the strong rare-earth magnets of SmCo BH)m-20 MGOe), Sm2(Co, Fe, Cu, Zrh7 s BH)m-30 MGOe) and the recently discovered Nd-Fe-B super-magnets with (BH)m-50 MGOe. For years the magnetic storage industry has employed Fe0 and CrO for storage media and 2 3 z permalloys and ferrites for recording heads. The recent development of thin film heads, the demand of higher density of information storage and the emergence of completely new technologies, like magneto-optics, call for entirely new types of magnetic materials. Another area in which new techniques of materials preparation have made a dramatic impact is the epitaxial growth of magnetic films. Recent work has shown that this process can be controlled on the scale of atomic monolayers permitting the growth of totally artificial structures, such as artificial superlattices with a resolution on this scale. Epitaxial growth has also permitted the stabilization of metastable phases in thin film form. These new phases often possess striking properties, such as strong perpendicular anisotropies, which may prove useful for technological applications such as recording. Research on magnetic multilayers and superlattices is increasing at an accelerating pace. Complex couplings between different magnetic layers lead to new properties not seen in bulk materials.
This thesis describes the fabrication of metal-insulator-semiconductor (MIS) structures using very high permittivity dielectrics (based on rare earths) grown by high-pressure sputtering from metallic targets. It demonstrates the possibility of depositing high permittivity materials (GdScO3) by means of high pressure sputtering from metallic targets using in situ plasma oxidation on Si and indium phosphate (InP) substrates. The advantage of this system is the high working pressure, which causes the particles to undergo multiple collisions and become thermalized before reaching the substrate in a pure diffusion process, thus protecting the semiconductor surface from damage. This work presents a unique fabrication using metallic targets and involving a two-step deposition process: a thin metallic film is sputtered in an Ar atmosphere and this film is then plasma oxidized in situ. It also demonstrates the fabrication of GdScO3 on Si with a permittivity value above 30 from metallic Gd and Sc targets. Since co-sputtering was not possible, a nanolaminate of these materials was deposited and annealed. The electrical properties of these devices show that the material is highly interesting from a microelectronic integration standpoint.
The Surface Wettability Effect on Phase Change collects high level contributions from internationally recognised scientists in the field. It thoroughly explores surface wettability, with topics spanning from the physics of phase change, physics of nucleation, mesoscale modeling, analysis of phenomena such drop evaporation, boiling, local heat flux at triple line, Leidenfrost, dropwise condensation, heat transfer enhancement, freezing, icing. All the topics are treated by discussing experimental results, mathematical modeling and numerical simulations. In particular, the numerical methods look at direct numerical simulations in the framework of VOF simulations, phase-field simulations and molecular dynamics. An introduction to equilibrium and non-equilibrium thermodynamics of phase change, wetting phenomena, liquid interfaces, numerical simulation of wetting phenomena and phase change is offered for readers who are less familiar in the field. This book will be of interest to researchers, academics, engineers, and postgraduate students working in the area of thermofluids, thermal management, and surface technology.
Many materials or media in nature and technology possess a microstructure which determines their macroscopic behaviour. The knowledge of the relevant mechanisms is often more comprehensive on the micro than on the macro scale. On the other hand, not all information on the micro level is relevant for the understanding of this macro behaviour. Therefore, averaging and homogenization methods are needed to select only the specific information from the micro scale, which influences the macro scale. These methods also open the possibility to design or to influence microstructures with the objective to optimize their macro behaviour. This book presents the development of new methods in this interdisciplinary field of macro- micro-interactions of different engineering branches like mechanical and process engineering, applied mathematics, theoretical, and computational physics. In particular, solids with microstructures and particle systems are considered. |
You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
R542
Discovery Miles 5 420
Having a Stroke Being a Parent
Connect - The Communication Disability Network
Paperback
R277
Discovery Miles 2 770
No Retreat, No Surrender - The Inspiring…
Oscar Chalupsky, Graham Spence
Paperback
|