Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
First and pioneering in the field Presents an authoritative description of a young field of research, with a long life ahead Clearly shows the role of multidisciplinary and team work, particularly addressed by combining theoretical/experimental expertise
The interest in the problem of surface diffusion has been steadily growing over the last fifteen years. This is clearly evident from the increase in the number of papers dealing with the problem, the development of new experimental techniques, and the specialized sessions focusing on diffusion in national and international meetings. Part of the driving force behind this increasing activity is our recently acquired ability to observe and possibly control atomic scale phenomena. It is now possible to look selectively at individual atomistic processes and to determine their relative importance during growth and reactions at surfaces. The number of researchers interested in this problem also has been growing steadily which generates the need for a good reference source to farniliarize newcomers to the problem. While the recent emphasis is on the role of diffusion during growth, there is also continuing progress on the more traditional aspects of the problem describing mass transport in an ensemble of particles. Such a description is based on the statistical mechanical analysis of a collection of particles that mutually interact and develop correlations. An average over the multitude of atomistic processes that operate under these conditions is necessary to fully describe the dynamics in the system.
Theoretical and experimental studies of phase transitions are at the forefront of modern condensed-matter physics. The seminal insight into the role played by fluctuations led to the renormalization group, an approach that has proved extremely useful in many other fields as well. This text considers a wide variety of problems in the theory of phase transitions, revealing their common features as well as their distinctions. Formal aspects are developed as required in discussions of particular systems, and theory is compared to experiment wherever possible. This book begins with a review of the classical approach, including the main aspects of a self-consistent treatment of systems with broken symmetry and a discussion of the Ginzburg-Landau functional. It then turns to a treatment of the renormalization group, discussing both Wilson's formulation based on Kadanoff's scale invariance as well as the approach using field theory. The authors then turn to a generalized approach using scale equations, which eliminates many of the problems of the other formulations. Subsequent chapters discuss applications of this approach: first to simple models; then to more realistic systems such as complex Heisenberg magnets, antiferromagnets, ferroelectrics, impure systems, and high-T(subscript c) superconductors. Finally, in the last two chapters many of these systems are analyzed within the framework of exactly solvable models. Suitable for advanced undergraduates as well as graduate students in physics, the text assumes some knowledge of statistical mechanics, but is otherwise self-contained.
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
Computational Studies of Crystal Structure and Bonding, by Angelo Gavezzotti Cryo-Crystallography: Diffraction at Low Temperature and More, by Piero Macchi High-Pressure Crystallography, by Malcolm I. McMahon Chemical X-Ray Photodiffraction: Principles, Examples, and Perspectives, by Pance Naumov Powder Diffraction Crystallography of Molecular Solids, by Kenneth D. M. Harris
Originally published in 1938, this textbook was primarily designed for university students to provide a solid grounding in the science of crystal physics. Previous knowledge of materials science is considered a prerequisite for the content as well as a solid understanding of physics, mathematics and crystallography. Throughout this book a two-fold purpose has been kept in view - 'to present the classical treatment of the physical properties of crystals in terms of tensor notation and also to indicate the lines of development of modern theoretical and experimental research'. Chapters are broad in scope, detailed and clearly written; chapter titles include, 'Conduction', 'Electric induction' and 'Elasticity'. Multiple diagrams are included throughout for reference. Encompassing the increasingly interdisciplinary nature of the subject and its rapid scientific developments, this textbook will be of significant value to students of physics as well to anyone with an interest in crystallography, geology and the history of education.
The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.
This research monograph offers an introduction to advanced quantum field theoretical techniques for many-particle systems beyond perturbation theory. Several schemes for resummation of the Feynman diagrams are described. The resulting approximations are especially well suited for strongly correlated fermion and boson systems. Also considered is the crossover from BCS superconductivity to Bose--Einstein condensation in fermion systems with strong attractive interaction. In particular, a field theoretic formulation of "bosonization" is presented; it is published here for the first time. This method is applied to the fractional quantum Hall effect, to the Coulomb plasma, and to several exactly solvable models.
This book presents experimental studies on emergent transport and magneto-optical properties in three-dimensional topological insulators with two-dimensional Dirac fermions on their surfaces. Designing magnetic heterostructures utilizing a cutting-edge growth technique (molecular beam epitaxy) stabilizes and manifests new quantization phenomena, as confirmed by low-temperature electrical transport and time-domain terahertz magneto-optical measurements. Starting with a review of the theoretical background and recent experimental advances in topological insulators in terms of a novel magneto-electric coupling, the author subsequently explores their magnetic quantum properties and reveals topological phase transitions between quantum anomalous Hall insulator and trivial insulator phases; a new topological phase (the axion insulator); and a half-integer quantum Hall state associated with the quantum parity anomaly. Furthermore, the author shows how these quantum phases can be significantly stabilized via magnetic modulation doping and proximity coupling with a normal ferromagnetic insulator. These findings provide a basis for future technologies such as ultra-low energy consumption electronic devices and fault-tolerant topological quantum computers.
It is generally accepted that a new material is often developed by ?nding a new synthesis method of reaction or a new reaction catalyst. Historically, a typical example may be referred to as a Ziegler-Natta catalyst, which has allowed large-scale production of petroleum-based polyole?ns since the middle of the 20th century. New polymer synthesis, therefore, will hopefully lead to creation of new polymer materials in the 21st century. This special issue contributed by three groups focuses on recent advances in polymer synthesis methods, which handle the cutting-edge aspects of the advanced technology. The ?rst article by Yokozawa and coworkers contains an overview of the - action control in various condensation polymerizations (polycondensations). Advanced technologies enabled the control of stereochemistry (regio-, g- metrical-, and enantio-selections), chemoselectivity, chain topology, and st- chiometry of monomers, giving a high molecular weight polymer. It has been recognized for a long time, however, that polycondensation is a dif?cult p- cess in controlling the reaction pathway, because the reaction is of step-growth and the reactivity of monomers, oligomers, and polymers are almost the same during the reaction and hence, the molecular weight of polymers and its d- tribution (M /M ) are impossible to regulate. The authors' group developed w n a new reaction system (chain-growth condensation polymerization), changing the nature of polycondensation from step-growth to chain-growth; namely the propagating chain-end is active, allowing for control of the product molecular weight as well as the distribution.
Features Covers both basic introductory topics, in addition to more advanced content Accompanied by over 200 problems starting from group algebra to the derivation of Migdal-Makeenko equations, Kim - Shifman - Vainshtein - Zakharov axion, and gluon + gluon to Higgs cross section, etc. Solutions are incorporated into the chapters to test understanding
With a history that reaches back some 90 years, the Hume-Rothery rules were developed to provide guiding principles in the search for new alloys. Ultimately, the rules bridged metallurgy, crystallography, and physics in a way that led to the emergence of a physics of the solid state in 1930s, although the physical implications of the rules were never fully resolved. Even today, despite a revived interest brought about by the 1984 discovery of quasicrystals, much about the rules remains an enigma. Now almost a century after the rules were put forward, Hume-Rothery Rules for Structurally Complex Alloy Phases provides researchers with an insightful and applicable interpretation of the Hume-Rothery electron concentration rule. Invoking first-principle band calculations, the book emphasizes the stability of structurally complex metallic alloys (CMAs).Written by Uichiro Mizutani, long considered the most knowledgeable expert on both the history and science of Hume-Rothery, this seminal work - Offers a unified interpretation of phase stabilization mechanism of CMAs in different classes Explains how to determine the effective valency of transition metal elements Details establishment of d-states-mediated-FsBz interactions in strongly orbital-hybridizing systems Covers the contrast between e/a and VEC, two notions of electron concentration parameters and includes a way to differentiate between them in designing new alloys Explores strengths and shortcomings for the theory on alloy phase stability Discusses the latest take on electron concentration for gamma-brass This work summarizes the ongoing history of Hume-Rothery and reflects the theoretical studies that Professor Mizutani embarked upon to gain deeper understanding of the basic physics behind stabilizing effects related to electron concentration. It describes how metallic and coval
Handsomely produced monograph provides graduate students and researchers with elegantly lucid accounts of some modern aspects of the topic to which the title refers. The five chapters bear these titles: Statistical mechanics of the Heisenberg ferromagnet; Statistical mechanics of electronic models o
This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book's main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.
This book focuses on the computational and theoretical approaches
to the coupling of fluid mechanics and solids mechanics. In
particular, nonlinear dynamical systems are introduced to the
handling of complex fluid-solid interaction systems, For the past
few decades, many terminologies have been introduced to this field,
namely, flow-induced vibration, aeroelasticity, hydroelasticity,
fluid-structure interaction, fluid-solid interaction, and more
recently multi-physics problems. Moreover, engineering applications
are distributed within different disciplines, such as nuclear,
civil, aerospace, ocean, chemical, electrical, and mechanical
engineering. Regrettably, while each particular subject is by
itself very extensive, it has been difficult for a single book to
cover in a reasonable depth and in the mean time to connect various
topics. In light of the current multidisciplinary research need in
nanotechnology and bioengineering, there is an urgent need for
books to provide such a linkage and to lay a foundation for more
specialized fields.
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
Engineered composites materials display superior properties to pristine materials. Glass fibres have been used for years in the production of light weight composites. This book is a much needed update as to the processing methods and technologies present in the manufacturing of GFRP. Coverage of machining, cutting, tools, and thermal loads are discussed. Ideal for researchers in academia and industry.
This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.
Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60's as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.
The aim of this NATO ASI has been to present an up-to-date overview of current areas of interest in amorphous materials, with particular emphasis on electronic properties and device applications. In order to limit the material to a manageable amount, the meeting was concerned almost exclusively with semiconducting materials. This volume should be regarded as a follow-on to the NATO ASI held in Sozopol, Bulgaria in 1996 and published as "Amorphous Insulators and Semiconductors" edited by M.F. Thorpe and M.1. Mitkova (Kluwer Academic Publishers, NATO ASI series, 3 High Technology - Vol. 23). The lectures and seminars fill the gap between graduate courses and research seminars. The lecturers and seminar speakers were chosen as experts in their respective areas, and the lectures and seminars that were given are presented in this volume. During the first week of the meeting, an emphasis was placed on introductory lectures while the second week focused more on research seminars. There were two very good poster sessions that generated a lot of discussion, but these are not reproduced in this volume as the editors wanted to have only larger contributions to make the proceedings more coherent. |
You may like...
Scanning Probe Microscopy of Soft Matter…
V.V. Tsukruk
Hardcover
Colloids - Types, Preparation and…
Mohamed Nageeb Rashed
Hardcover
Liquid Crystals and Display Technology
Morteza Sasani Ghamsari, Irina Carlescu
Hardcover
|