![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
This book focuses on the computational and theoretical approaches
to the coupling of fluid mechanics and solids mechanics. In
particular, nonlinear dynamical systems are introduced to the
handling of complex fluid-solid interaction systems, For the past
few decades, many terminologies have been introduced to this field,
namely, flow-induced vibration, aeroelasticity, hydroelasticity,
fluid-structure interaction, fluid-solid interaction, and more
recently multi-physics problems. Moreover, engineering applications
are distributed within different disciplines, such as nuclear,
civil, aerospace, ocean, chemical, electrical, and mechanical
engineering. Regrettably, while each particular subject is by
itself very extensive, it has been difficult for a single book to
cover in a reasonable depth and in the mean time to connect various
topics. In light of the current multidisciplinary research need in
nanotechnology and bioengineering, there is an urgent need for
books to provide such a linkage and to lay a foundation for more
specialized fields.
A simplified, yet rigorous treatment of scattering theory methods and their applications "Dispersion Decay and Scattering Theory" provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations. The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included. "Dispersion Decay and Scattering Theory" is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.
First and pioneering in the field Presents an authoritative description of a young field of research, with a long life ahead Clearly shows the role of multidisciplinary and team work, particularly addressed by combining theoretical/experimental expertise
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
With a history that reaches back some 90 years, the Hume-Rothery rules were developed to provide guiding principles in the search for new alloys. Ultimately, the rules bridged metallurgy, crystallography, and physics in a way that led to the emergence of a physics of the solid state in 1930s, although the physical implications of the rules were never fully resolved. Even today, despite a revived interest brought about by the 1984 discovery of quasicrystals, much about the rules remains an enigma. Now almost a century after the rules were put forward, Hume-Rothery Rules for Structurally Complex Alloy Phases provides researchers with an insightful and applicable interpretation of the Hume-Rothery electron concentration rule. Invoking first-principle band calculations, the book emphasizes the stability of structurally complex metallic alloys (CMAs).Written by Uichiro Mizutani, long considered the most knowledgeable expert on both the history and science of Hume-Rothery, this seminal work - Offers a unified interpretation of phase stabilization mechanism of CMAs in different classes Explains how to determine the effective valency of transition metal elements Details establishment of d-states-mediated-FsBz interactions in strongly orbital-hybridizing systems Covers the contrast between e/a and VEC, two notions of electron concentration parameters and includes a way to differentiate between them in designing new alloys Explores strengths and shortcomings for the theory on alloy phase stability Discusses the latest take on electron concentration for gamma-brass This work summarizes the ongoing history of Hume-Rothery and reflects the theoretical studies that Professor Mizutani embarked upon to gain deeper understanding of the basic physics behind stabilizing effects related to electron concentration. It describes how metallic and coval
Key features: Complete introductory overview of cosmic ray physics Covers the origins, acceleration, transport mechanisms and detection of these particles Mathematical and technical detail is kept separate from the main text
Presents comprehensive information on nanocarbon synthesis and properties and some specific applications Covers growth of carbon nanoparticles, nanotubes, ribbons, graphene, graphene derivatives, porous /spongy phases, graphite, and 3D carbon fabrics Documents large variety of characterizations and evaluation on nature of growth causing effect onto structure-properties Contains dedicated chapters on miniaturized, flat, and 2D devices Discusses variety of applications from military to public domain including prevalent topics related to carbon
Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60's as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.
Covers materials, chemistry, and technologies for nanowires. Covers the state-of-the-art progress and challenges in nanowires. Provides fundamentals of the electrochemical behavior of various electrochemical devices and sensors. Offers insights on tuning the properties of nanowires for many emerging applications. Provides new direction and understanding to scientists, researchers, and students.
The aim of this NATO ASI has been to present an up-to-date overview of current areas of interest in amorphous materials, with particular emphasis on electronic properties and device applications. In order to limit the material to a manageable amount, the meeting was concerned almost exclusively with semiconducting materials. This volume should be regarded as a follow-on to the NATO ASI held in Sozopol, Bulgaria in 1996 and published as "Amorphous Insulators and Semiconductors" edited by M.F. Thorpe and M.1. Mitkova (Kluwer Academic Publishers, NATO ASI series, 3 High Technology - Vol. 23). The lectures and seminars fill the gap between graduate courses and research seminars. The lecturers and seminar speakers were chosen as experts in their respective areas, and the lectures and seminars that were given are presented in this volume. During the first week of the meeting, an emphasis was placed on introductory lectures while the second week focused more on research seminars. There were two very good poster sessions that generated a lot of discussion, but these are not reproduced in this volume as the editors wanted to have only larger contributions to make the proceedings more coherent.
This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book's main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.
The first book completely devoted to the subject, this volume describes the analysis of the composition and structure of glass and glass ceramics. Although conceived as a monograph, the individual chapters are written by leading Schott experts on the corresponding subjects.
The first broad and in-depth overview of current research in
attosecond nanophysics, covering the field of active plasmonics via
attosecond science in metals and dielectrics to novel imaging
techniques with the highest spatial and temporal resolution.
Engineered composites materials display superior properties to pristine materials. Glass fibres have been used for years in the production of light weight composites. This book is a much needed update as to the processing methods and technologies present in the manufacturing of GFRP. Coverage of machining, cutting, tools, and thermal loads are discussed. Ideal for researchers in academia and industry.
This book discusses in depth many of the key problems in non-equilibrium physics. Besides the standard subjects (Boltzmann and Master equations, linear response) it includes several new important subjects as well. The origin of macroscopic irreversible (dissipative) behavior receives an extended attention and is illustrated in the framework of solvable classical models of open systems (Chapter 3). The scaling relationship between the kinetic and hydrodynamical levels is described in Chapter 9. The QED of charged non-relativistic particles and its restriction to the states without photons to order 1/c(2) leading to the current-current magnetic interaction is discussed in some depth in Chapters 14 and 15. Bose-Einstein condensation in real time within the frame of rate equations, as well as soliton-like solutions of the non-linear Gross-Pitaevskii equation are discussed in Chapter 22. The presentation also includes the latest developments - quantum kinetics - related to modern ultrafast spectroscopy (Chapters 23-30).This second edition was improved, restructured, and enriched with new results from the recent papers of the author. Chapter 3 was largely extended and Chapters 14 and 15 are completely new. Chapter 22 has a new Section. Several new useful figures were added throughout the book as well.
Many fundamental issues in classical condensed matter physics can be addressed experimentally using systems of individually visible mesoscopic particles playing the role of "proxy atoms". The interaction between such "atoms" is determined by the properties of the surrounding medium and/or by external tuning. The best-known examples of such experimental model systems are two different domains of soft matter - complex plasmas and colloidal dispersions.The major goal of this book - written by scientists representing both complex plasmas and colloidal dispersions - is to bring the two fields together. In the first part of the book the basic properties of the two systems are summarized, demonstrating huge conceptual and methodological overlap of the fields and emphasizing numerous cross-connections between them and their essential complementarity. This "introductory part" should serve to help each community in understanding the other field better. Simultaneously, this provides the necessary basis for the second part focused on particle-resolved studies of diverse generic phenomena in liquids and solids - all performed with complex plasmas and/or colloidal dispersions. The book is concluded with the discussion of critical open issues and fascinating perspectives of such interdisciplinary research.
Rapid thermal and integrated processing is an emerging single-wafer technology in ULSI semiconductor manufacturing, electrical engineering, applied physics and materials science. Here, the physics and engineering of this technology are discussed at the graduate level. Three interrelated areas are covered. First, the thermophysics of photon-induced annealing of semiconductor and related materials, including fundamental pyrometry and emissivity issues, the modelling of reactor designs and processes, and their relation to temperature uniformity. Second, process integration, treating the advances in basic equipment design, scale-up, integrated cluster-tool equipment, including wafer cleaning and integrated processing. Third, the deposition and processing of thin epitaxial, dielectric and metal films, covering selective deposition and epitaxy, integrated processing of layer stacks, and new areas of potential application, such as the processing of III-V semiconductor structures and thin- film head processing for high-density magnetic data storage.
This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.
This volume (>Ie) NEMATICS Mathematical and Physical aspects constitutes the proceedings of a workshop which was held at l'Universite de Paris Sud (Orsay) in May 1990. This meeting was an Advanced Research Workshop sponsored by NATO. We gratefully acknowledge the help and support of the NATO Science Committee. Additional support has been provided by the Ministere des affaires etrangeres (Paris) and by the Direction des Recherches et Etudes Techniques (Paris). Also logistic support has been provided by the Association des Numericiens d'Orsay. (*) These proceedings are published in the framework of the "Contrat DRET W 90/316/ AOOO." v Contents (*) FOREWORD v INTRODUCTION 1. M. CORON, 1. M. GHIDAGLIA, F. HELEIN xi AN ENERGY-DECREASING ALGORITHM FOR HARMONIC MAPS F. ALOUGES 1 A COHOMOLOGICAL CRITERION FOR DENSITY OF SMOOTH MAPS IN SOBOLEV SPACES BETWEEN TWO MANIFOLDS F. BETHUEL, 1. M. CORON, F. DEMENGEL, F. HELEIN 15 ON THE MATHEMATICAL MODELING OF TEXTURES IN POLYMERIC LIQUID CRYSTALS M. C. CAmERER 25 A RESULT ON THE GLOBAL EXISTENCE FOR HEAT FLOWS OF HARMONIC MAPS FROM D2 INTO S2 K. C. CHANG, W. Y. DING 37 BLOW-UP ANALYSIS FOR HEAT FLOW OF HARMONIC MAPS Y. CHEN 49 T AYLOR-COUETTE INSTABILITY IN NEMATIC LIQUID CRYSTALS P. E. ClADIS 65 ON A CLASS OF SOLUTIONS IN THE THEORY OF NEMATIC PHASES B. D. COLEMAN, 1. T. JENKINS 93 RHEOLOGY OF THERMOTROPIC NEMATIC LIQUID CRYSTALLINE POLYMERS M. M. DENN, 1. A.
The aim of the authors in this monograph has been to present a general review of the magnetic properties of the rare earth metals, and a comprehensive, unified, and coherent account of the magnetic structures and excitations. These both reflect the nature of the fundamental interactions, and determine many of the characteristic properties of the metals. The authors have tried to concentrate on the essential principles and their applications to typical examples, generally restricting the discussion to the pure elements and considering alloys and compounds only when they are necessary to illuminate particular topics. Both authors have been involved for some time in the effort that has been made in Denmark to study, both theoretically and experimentally, the magnetic structures and especially the excitations in the rare earths. This account of the subject represents the results of their experience, and it is has been written in the hope that it will be useful not only to those who have a special interest in rare earth magnetism, but also to a wider audience who wish to learn something about the techniques and achievements of modern research in magnetism.
* Covers the state-of-the-art progress in one-dimensional nanomaterials polymeric materials * Presents synthesis, characterization, and applications of one-dimensional polymeric nanocomposites for energy production, storage, flexible electronics, sensors, and biomedical applications * Provides fundamentals of electrochemical behavior and their understanding of energy devices such as fuel cells, batteries, supercapacitors, solar cells, etc. * Provides new directions to scientists, researchers, and students to better understand the chemistry, technologies, and applications of one-dimensional polymeric nanocomposites
This book presents experimental studies on emergent transport and magneto-optical properties in three-dimensional topological insulators with two-dimensional Dirac fermions on their surfaces. Designing magnetic heterostructures utilizing a cutting-edge growth technique (molecular beam epitaxy) stabilizes and manifests new quantization phenomena, as confirmed by low-temperature electrical transport and time-domain terahertz magneto-optical measurements. Starting with a review of the theoretical background and recent experimental advances in topological insulators in terms of a novel magneto-electric coupling, the author subsequently explores their magnetic quantum properties and reveals topological phase transitions between quantum anomalous Hall insulator and trivial insulator phases; a new topological phase (the axion insulator); and a half-integer quantum Hall state associated with the quantum parity anomaly. Furthermore, the author shows how these quantum phases can be significantly stabilized via magnetic modulation doping and proximity coupling with a normal ferromagnetic insulator. These findings provide a basis for future technologies such as ultra-low energy consumption electronic devices and fault-tolerant topological quantum computers. |
![]() ![]() You may like...
Renegades - Born In The USA
Barack Obama, Bruce Springsteen
Hardcover
![]() R962 Discovery Miles 9 620
Once Upon a Time in Biafra - Memories…
Onianwa Oluchukwu Ignatus
Hardcover
R3,969
Discovery Miles 39 690
|