![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
Structure- and Adatom-Enriched Essential Properties of Graphene Nanoribbons offers a systematic review of the feature-rich essential properties in emergent graphene nanoribbons, covering mainstream theoretical and experimental research. It includes a wide range of 1D systems; namely, armchair and zigzag graphene nanoribbons with and without hydrogen terminations, curved and zipped graphene nanoribbons, folded graphene nanoribbons, carbon nanoscrolls, bilayer graphene nanoribbons, edge-decorated graphene nanoribbons, and alkali-, halogen-, Al-, Ti, and Bi-absorbed graphene nanoribbons. Both multiorbital chemical bondings and spin arrangements, which are responsible for the diverse phenomena, are explored in detail. First-principles calculations are developed to thoroughly describe the physical, chemical, and material phenomena and concise images explain the fundamental properties. This book examines in detail the application and theory of graphene nanoribbons, offering a new perspective on up-to-date mainstream theoretical and experimental research.
Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world's foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.
This book addresses graduate students and researchers wishing to better understand the liquid and supercritical fluid states of matter, presenting a single cohesive treatment of the liquid and supercritical fluid states using the gas-like and solid-like approaches. Bringing this information together into one comprehensive text, this book outlines how our understanding of the liquid and supercritical fluid states is applied and explores the use of supercritical fluids in daily life and in research, for example in power generation, and their existence in planetary interiors. Presents a single coherent treatment of the key knowledge about the liquid and supercritical fluid states Provides comprehensive survey of key fluid properties from the latest experiments and applies our theoretical knowledge to understand the behaviour of these real fluids Explores the consequences of recent advances in the field on our understanding in industry, nature, and in interdisciplinary research, including planetary science
Nuclear structure Physics connects to some of our fundamental questions about the creation of universe and its basic constituents. At the same time, precise knowledge on the subject has lead to develop many important tools of human kind such as proton therapy, radioactive dating etc. This book contains chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: * Nuclear Structure of Nuclei at or Near Drip-Lines * Synthesis challenges and properties of Superheavy nuclei * Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme * Shell Closure, Magicity and other novel features of nuclei at extremes * Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental program worldwide. It is hoped that the book chapters written by experienced and well known researchers/experts will be helpful for the master students, graduate students and researchers and serve as a standard & uptodate research reference book on the topics covered.
This monograph represents an extension of the author's original PhD thesis and includes a more thorough discussion on the concepts and mathematics behind his research works on the foam model, as applied to studying issues of phase stability and elasticity for various non-closed packed structures found in fuzzy and colloidal crystals, as well as on a renormalization-group analysis regarding the critical behavior of loop polymers upon which topological constraints are imposed. The common thread behind these two research works is their demonstration of the importance and effectiveness of utilizing geometrical and topological concepts for modeling and understanding soft systems undergoing phase transitions.
Interaction of Radiation with Matter focuses on the physics of the interactions of ionizing radiation in living matter and the Monte Carlo simulation of radiation tracks. Clearly progressing from an elementary level to the state of the art, the text explores the classical physics of track description as well as modern aspects based on condensed matter physics. The first section of the book discusses the fundamentals of the radiation field. In the second section, the authors describe the cross sections for electrons and heavy ions-the most important information needed for simulating radiation track at the molecular level. The third section details the inelastic scattering and energy loss of charged particles in condensed media, particularly liquid water. The final section contains a large number of questions and problems to reinforce learning. Designed for radiation interaction courses, this textbook is the ideal platform for teaching students in medical/health physics and nuclear engineering. It gives students a solid grounding in the physical understanding of radiation track structure in living matter, enabling them to pursue further work in radiological physics and radiation dosimetry.
These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons - are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.
Certain small solid particles are surface-active at fluid interfaces and thus are able to stabilize materials previously considered impossible to stabilize in their absence. Liquid marbles, particle-coated non-sticking liquid droplets, represent one of these materials. Preparation of liquid marbles was described only about 15 years ago and they are now widely studied by many research groups and numerous applications of liquid marbles have been advanced. The book is written for postgraduates and researchers working on the area who are training to become chemists, soft matter physicists, materials scientists, and engineers.
Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.
Offering a materials science point of view, the author covers the theory and practice of adsorption and diffusion applied to gases in microporous crystalline, mesoporous ordered, and micro/mesoporous amorphous materials. Examples used include microporous and mesoporous molecular sieves, amorphous silica, and alumina and active carbons, akaganeites, prussian blue analogues, metal organic frameworks and covalent organic frameworks. The use of single component adsorption, diffusion in the characterization of the adsorbent surface, pore volume, pore size distribution, and the study of the parameters characterizing single component transport processes in porous materials are detailed.
Since the late 20th century, graphene-a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice-has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness, high thermal conductivity, optical transmittance, and super hydrophobicity at nanometer scale. In contrast to research on its excellent electronic and optoelectronic properties, research on the syntheses of a single sheet of graphene for industrial applications is in its nascent stages. Graphene: Synthesis and Applications reviews the advancement and future directions of graphene research in the areas of synthesis and properties, and explores applications, such as electronics, heat dissipation, field emission, sensors, composites, and energy.
This work constitutes a detailed study of electrical and magnetic properties in nanometric materials with a range of scales: atomic-sized nanoconstrictions, micro- and nanowires and thin films. Firstly, a novel method of fabricating atomic-sized constrictions in metals is presented; it relies on measuring the conduction of the device while a focused-ion-beam etching process is in progress.
This book provides a practical approach to consolidate one's acquired knowledge or to learn new concepts in solid state physics through solving problems. It contains 300 problems on various subjects of solid state physics. The problems in this book can be used as homework assignments in an introductory or advanced course on solid state physics for undergraduate or graduate students. It can also serve as a desirable reference book to solve typical problems and grasp mathematical techniques in solid state physics. In practice, it is regarded fascinating and rewarding to learn a new idea or technique through solving a real challenging problem than through reading only. In this aspect, this book is not a plain collection of problems but it presents a large number of problem-solving ideas and procedures, some of which are valuable to practitioners in condensed matter physics.
These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons - are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.
Soft condensed matter physics relies on a fundamental understanding at the interface between physics, chemistry, biology, and engineering for a host of materials and circumstances that are related to, but outside, the traditional definition of condensed matter physics. Featuring contributions from leading researchers in the field, this book uniquely discusses both the contemporary experimental and computational manifestations of soft condensed matter systems. From particle tracking and image analysis, novel materials and computational methods, to confocal microscopy and bacterial assays, this book will equip the reader for collaborative and interdisciplinary research efforts relating to a range of modern problems in nonlinear and non-equilibrium systems. It will enable both graduate students and experienced researchers to supplement a more traditional understanding of thermodynamics and statistical systems with knowledge of the techniques used in contemporary investigations. Color versions of a selection of the figures are available at www.cambridge.org/9780521115902.
Autowave Plasticity: Localization and Collective Modes discusses the nature of plastic flow in solids associated with the development of a localized plastic flow. Written by an authority in the field, the author demonstrates how patterns of localized plastic flow are associated with autowave modes that are generated in a deformable sample and delivers a complete work on the subject. Key Features An original work on the nature of plastic flows in solids, particularly metals and crystals Focuses on plastic flow as an autowave process Contains elements of theories, experimental considerations, and numerical modeling This reference will help readers with creating experimental methods to observe or localize plastic flow and with the modeling of plastic flows. It is a valuable reference for graduate students and research specialists working in material science.
The present volume contains the text of the invited talks delivered at the Eighth International Conference on Recent Progress in Many-Body Theories held at SchloB Seggau, Province of Styria, Austria, during the period August 22-26, 1994. The pro ceedings of the Fifth Conference (Oulu, Finland 1987), the Sixth Conference (Arad, Israel 1989) and the Seventh Conference (Minneapolis, USA 1991) have been published. by Plenum as the first three volumes of this series. Papers from the First Conference (Trieste, Italy 1978) comprise Nuclear Physics volume A328, Nos. 1 and 2, the Second Conference (Oaxtepec, Mexico 1979) was published by Springer-Verlag as volume 142 of "Lecture Notes in Physics," entitled "Recent Progress in Many Body Theories." Vol ume 198 of the same series contains the papers from the Third Conference (Altenberg, 1983). These volumes intend to cover a broad spectrum of current research topics in physics that benefit from the application of many-body theories for their elucidation. At the same time there is a focus on the development and refinement of many-body methods. One of the major aims of the conference series has been to foster the exchange of ideas among physicists working in such diverse areas as nuclear physics, quantum chemistry, complex systems, lattice Hamiltonians, quantum fluids and condensed matter physics. The present volume contains contributions from all these areas. th The conference was dedicated on the occasion of Ludwig Boltzmann's 150 birthday."
Sand, rice, sugar, snow, cement... Although ubiquitous in our daily lives, granular media still challenge engineers and fascinate researchers. This book provides the state-of-the-art of the physics of granular media and recent advances in the field. The book presents the fundamental properties of granular materials: interactions between grains; solid, liquid and gaseous behaviours; coupling with a fluid; and sediment transport and formation of geological structures. Descriptions of the phenomena combine qualitative and formal arguments, coming from areas as diverse as elasticity, plasticity, statistical physics, fluid mechanics and geomorphology. Many examples of the astonishing behaviours of granular media are presented, including avalanches, segregation, dune song and quicksand. This book is ideal for graduate students and researchers in physics, applied mathematics and engineering.
Solid state composites and hybrid systems offer multifunctional applications in various fields of human life, demonstrating solutions to the key problems of the environment, human health, biology, medicine, electronics, energy harvesting and storage. Exploring this innovative field of research, this book details the wide range of materials, techniques, and approaches utilised in composite and hybrid structures in recent years. It will be of interest not only for experienced researchers but also for postgraduate students and young researchers entering the fields of nanoscience, material sciences, and bioengineering. Features: Contains the latest research developments in the materials, techniques, patents, and approaches in the field Includes both fundamental aspects and applied research Edited by two highly experienced researchers
Small systems are a very active area of research and development due to improved instrumentation that allows for spatial resolution in the range of sizes from one to 100 nm. In this size range, many physical and chemical properties change, which opens up new approaches to the study of substances and their practical application. This affects both traditional fields of knowledge and many other new fields including physics, chemistry, biology, etc. This book highlights new developments in statistical thermodynamics that answer the most important questions about the specifics of small systems - when one cannot apply equations or traditional thermodynamic models.
Linear induction accelerators are successfully used as power supplies for numerous devices of relativistic high-frequency electronics. This book addresses ways to solve physical and engineering problems arising in the calculation, design, modeling and operation of linear induction accelerators intended for supplying relativistic microwave devices. It reviews and analyzes both classic and recent studies on the topic of linear induction accelerators (LIA) for generating and amplifying microwave radiation by relativistic devices.
The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Joerg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universitat Munchen in Munchen, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts
III-V semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as light emitting diodes and solar cells. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. Doping with impurities is a common method of modifying and diversifying the properties of physical and chemical semiconductors. This book covers all known information about phase relations in quaternary systems based on III-V semiconductors, providing he first systematic account of phase equilibria in quaternary systems based on III-V semiconductors and making research originally published in Russian accessible to the wider scientific community. Features: Contains up-to-date experimental and theoretical information Allows readers to synthesize semiconducting materials with predetermined properties Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases
Amorphous-nanocrystalline alloys are a relatively new class of materials born from the rapid development of new technologies and different methods of producing amorphous and nanocrystalline powders and films, compacting, melt quenching, megaplastic deformation, implantation, laser, plasma, and other high-energy methods. This book considers methods of producing these materials (melt quenching, controlled crystallization, deformation effect, and pulse treatments (photon, laser and ultrasound), spraying thin films, and ion implantation). Theoretical and experimental studies describe plastic deformation mechanisms and physico-mechanical properties. Practical applications are also presented. |
![]() ![]() You may like...
A Comprehensive Book on Experimental…
Mousumi Kar, Sujit Pillai
Hardcover
R1,050
Discovery Miles 10 500
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Downstream Consequences of Ribb River…
Chalachew Abebe Mulatu
Paperback
R2,295
Discovery Miles 22 950
Proceedings of the North Carolina…
North Carolina Pharmaceutical Associa, North Carolina Board of Pharmacy an
Hardcover
R891
Discovery Miles 8 910
|