![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
Doped by isovalent or heterovalent foreign impurities, II-VI semiconductor compounds enable control of optical and electronic properties, making them ideal in detectors, solar cells, and other precise device applications. Quaternary alloys allow a simultaneous adjustment of band gap and lattice constant, increasing radiant efficiency at a wide range of wavelengths. Quaternary Alloys Based on II-VI Semiconductors consolidates data pertaining to diagrams of quaternary systems based on these semiconductor compounds. The book illustrates up-to-date experimental and theoretical information about phase relations based on II-VI semiconductor systems with four components. It critically evaluates many industrially significant systems presented in two-dimensional sections for the condensed phases. The author classifies all materials according to the periodic groups of their constituent atoms and additional components in the order of their group number. Each quaternary database description contains brief information on the diagram type, possible phase transformations and physical-chemical interactions of the components, thermodynamic characteristics, and methods for equilibrium investigation and sample preparation. Most of the phase diagrams are in their original form. For those with varying published data, the text includes several versions for comparison. This book provides invaluable data for technologists and researchers involved in developing and manufacturing II-VI semiconductors at industrial and national laboratories. It is also suitable for phase relations researchers, inorganic chemists, and semiconductor physicists as well as graduate students in materials science and engineering. Check out the companion books: Ternary Alloys Based on II-VI Semiconductor Compounds and
Cosmology has undergone a revolution in recent years. The exciting
interplay between astronomy and fundamental physics has led to
dramatic revelations, including the existence of the dark matter
and the dark energy that appear to dominate our cosmos. But these
discoveries only reveal themselves through small effects in noisy
experimental data. Dealing with such observations requires the
careful application of probability and statistics.
The authors begin this book with a systematic overview of superconductivity, superconducting materials, magnetic levitation, and superconducting magnetic levitation - the prerequisites to understand the latter part of the book - that forms a solid foundation for further study in High Temperature Superconducting Magnetic Levitation (HTS Maglev). This book presents our research progress on HTS Maglev at Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University (SWJTU), China, with an emphasis on the findings that led to the world's first manned HTS Maglev test vehicle "Century". The book provides a detailed description on our previous work at ASCLab including the designing of the HTS Maglev test and measurement method as well as the apparatus, building "Century", developing the HTS Maglev numerical simulation system, and making new progress on HTS Maglev. The final parts of this book discuss research and prototyping efforts at ASCLab in several adjacent fi elds including HTS Maglev bearing, Flywheel Energy Storage System (FESS) and HTS maglev launch technology. We hope this book becomes a valuable source for researchers and engineers working in the fascinating field of HTS Maglev science and engineering. Contents Fundamentals of superconductivity Superconducting materials Magnetic levitation Superconducting magnetic levitation HTS Maglev experimental methods and set-up First manned HTS Maglev vehicle in the world Numerical simulations of HTS Maglev New progress of HTS Maglev vehicle HTS Maglev bearing and flywheel energy storage system HTS Maglev launch technology
This volume attempts to fill the gap between standard introductions to solid state physics, and textbooks which give a sophisticated treatment of strongly correlated systems. Starting with the basics of the microscopic theory of magnetism, one proceeds with relatively elementary arguments to such topics of current interest as the Mott transition, heavy fermions, and quantum magnetism. The basic approach is that magnetism is one of the manifestations of electron-electron interaction, and its treatment should be part of a general discussion of electron correlation effects.Though the text is primarily theoretical, a large number of illustrative examples are brought from the experimental literature. There are many problems, with detailed solutions.The book is based on the material of lectures given at the Diploma Course of the International Center for Theoretical Physics, Trieste, and later at the Technical University and the R. Eoetvoes University of Budapest, Hungary.
Solid state physics is a complex area which needs a full arsenal of experimental techniques to uncover all its intriguing aspects. The present book presents selected results from a couple of methods where phenomena in solids are observed from points of view that fall somewhat outside the experimental mainstream, but have contributed with unique information to the understanding of magnetism, supercondivity, point defects in metals, surface and interface physics and the physics and chemistry of metal/hydrogen systems, in particular diffusion phenomena. The PAC and uSR methods described here are based on the observations of local magnetic and electric fields and their dynamic behaviour by recording the spin motion of excited nuclei and implanted positive muons, respectively; another method utilizes the electrostatic interaction of protons for the study of metallic multilayers and their interfaces. The text is centered on the relevant physical problems rather than being method-oriented and puts the specific, and sometimes unique, information gained by the above mentioned methods into a general perspective.
This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entire nonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary.The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and applied mathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is known as the Courant point of view!! - Percy Deift, Courant Institute, New York.Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian National University (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.
Formal Methods: A Reaction Theory and the Relation Between Widths and Energy Shifts; F.B. Malik. The Control of Chaos; B.A. Huberman. Classical and Quantum Fluids: Compressible RayleighBenard Convection in a Hard Disks System; D. Risso, P. Cordero. Positron Annihilation as a Probe of Localized States in Fluids; B.N. Miller. Electronic Systems, Atoms, and Molecules: Lower Bound Aspects of Fermion Density Functionals; J.K. Percus. Selfconsistent Semiclassical Mean Field; M. Casas, et al. High Tc Superconductivity: Search of Superconductivity in Metal Clusters; M. Barranco, et al. Stochastic Processes: Reactant Segregation; H.S. Wio, et al. Nuclear and Particle Physics: A Direct Approach to the Tamm-Dancoff Approximation; R.C. Bochicchio, H. Grinberg. Overview Talk: Some Considerations on the Greenhouse Effect and Related Problems; V.M. Canuto. 30 additional articles. Index.
This 1998 book describes the physics of superconductivity and superfluidity, macroscopic quantum phenomena found in many conductors at low temperatures and in liquid helium 4 and helium 3. In the first part of the book the author presents the mean field theory of generalized pair condensation. This is followed by a description of the properties of ordinary superconductors using BCS theory. The book then proceeds with expositions of strong coupling theory and the Ginzberg-Landau theory. The remarkable properties of superfluid helium 3 are then described, as an example of a superfluid with internal degrees of freedom. The topics covered are dealt with in a coherent manner, with all necessary theoretical background given. Recent topics in the field, such as the copper-oxide high temperature superconductors and exotic superconductivity of heavy fermion systems are discussed in the final chapter. This book will be of interest to graduate students and researchers in condensed matter physics, especially those working in superconductivity and superfluidity.
Euromat is the biennial meeting of the Federation of European Materials Societies (FEMS) constituted by its 24 member societies in Europe. The 2003 meeting took place in Lausanne, Switzerland, and was organised by the French, German and Swiss member societies: Societe Francaise de Metallurgie et de Materiaux (SF2M) Deutsche Gesellschaft fur Materialkunde (DGM) Schweizerischer Verband fur die Materialtechnik (SVMT) The scientific programme of the EUROMAT 2003 congress was divided into 15 topics that in turn were substructured into 47 symposia. The present volume of the Euromat Publication series refers to selected papers of the Topic A: Materials for Information Technology Peter Paul Schepp Conference Organiser of EUROMAT 2003 Preface Information technology (IT) is driving the need for research, development and - troduction of new materials and concepts for applications requiring significantly increased electrical and optical functionality. In particular, microelectronic pr- ucts must be improved continuously to meet performance demands while mainta- ing acceptable levels of reliability. For the semiconductor industry, the challenges to process technology and advanced materials are outlined in the International Technology Roadmap for Semiconductors (ITRS). Microelectronic and, in the longer term, nanoelectronic products of future technology generations rely on - vanced materials for the so-called front-end-of-line and back-end-of-line processes on the waferlevel (die level) as well as for assembly and packaging. More than ever before, the dramatic productivity enhancement of the IT era will only be p- sible using advanced materials. Transistor and interconnect scaling has brought microelectronics a long way."
Covers a broad range of topics on the crystal chemistry, thin-film and crystal growth, and various physical properties of rare-earth borides, including detailed reviews of their structural and thermodynamic properties, electronic properties in the bulk and at the surface, and magnetic behavior at low temperatures from the perspective of both theory and experiment Includes a comprehensive review of the crystal-growth methods and their influence on the quality of single-crystalline samples across different structural families of rare-earth borides Encompasses comprehensive reviews of the lattice and electron dynamical properties from the perspective of Raman scattering, inelastic neutron scattering, and x-ray spectroscopy. In particular, a multifaceted analysis of the low-temperature magnetic dynamics associated with the multipolar ordering phenomena is highlighted Contains two chapters on the theory of multipolar excitations in rare-earth borides, authored by the leading experts in the physics of f-electron Kondo systems Features a contribution by Priscila F. S. Rosa and Zachary Fisk about the electronic properties of the Kondo insulator SmB6 that received a lot of attention in recent years due to its intensely debated topological electronic properties
Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.
The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the proposed theories-developed within the framework of the electron density functional theory and dielectric formalism-to experimental data. The book begins with a discussion of the thermodynamics of surface phenomena and covers experimental and theoretical methods for studying surface characteristics of solids. Chapters describe calculations of surface and adhesion characteristics of metals using the density functional method. They also examine the calculation of adhesion characteristics of metals, semiconductors, and complex compounds based on dielectric formalism. In addition, the text covers dry friction, adsorption of metal atoms, and ferromagnetic films. The principles and methods presented in this book are useful in selecting optimum materials and coatings for various applications, including minimizing friction for increased efficiency of microelectronic components.
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spiece develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world's first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
This volume presents lecture notes of the 12th International School of Theoretical Physics held in 2016 in Rzeszow, Poland. The lectures serve as an introduction for young physicists starting their career in condensed matter theoretical physics. The book provides a comprehensive overview of modern ideas and advances in theories and experiments of new materials, quantum nanostructures as well as new mathematical methods.This lecture note is an essential source of reference for physicists and materials scientists. It is also a suitable reading for graduate students.
In crystal chemistry and crystal physics, the relations between the symmetry groups (space groups) of crystalline solids are of special importance. Part 1 of this book presents the necessary mathematical foundations and tools: the fundamentals of crystallography with special emphasis on symmetry, the theory of the crystallographic groups, and the formalisms of the needed crystallographic computations. Part 2 gives an insight into applications to problems in crystal chemistry. With the aid of numerous examples, it is shown how crystallographic group theory can be used to make evident relationships between crystal structures, to set up a systematic order in the huge amount of known crystal structures, to predict crystal structures, to analyse phase transitions and topotactic reactions in the solid state, to understand the formation of domains and twins in crystals, and to avoid errors in crystal structure determinations. A broad range of end-of-chapter exercises offers the possibility to apply the learned material. Worked-out solutions to the exercises can be found at the end of the book.
Nonlinear physics has been growing at an astounding rate over the past two decades and has changed its character from a collection of exotic examples of nonstandard behaviour to an all-embracing scientific methodology. This practical hands-on guide provides an overview of the features of condensed matter systems. This book provides self-contained background material, however the centrepiece of the text is the chapter dealing with a systematic development of nonlinear field equations for many-body systems. In order to equip the reader with concrete skills in tackling nonlinear problems in physics, the authors analyse in great detail several important applications such as metamagnetism, superconductivity, the Hubbard Hamiltonian and the multi-electron atom to name a few. A separate mathematical chapter shows in an easy-to-follow manner how the various integrable nonlinear differential equations that arise in physics can be solved analytically. This book will serve as a compendium of facts and references related to the subject area of nonlinear condensed matter physics. In addition, it can be used as practical introduction into currently developed nonlinear research methods in theoretical physics in general.
The unique properties of ferromagnetic resonance (FMR) in magnetodielectric solids are widely used to create highly efficient analog information processing devices in the microwave range. Such devices include filters, delay lines, phase shifters, non-reciprocal and non-linear devices, and others. This book examines magnetic resonance and ferromagnetic resonance under a wide variety of conditions to study physical properties of magnetodielectric materials. The authors explore the properties in various mediums that significantly complicate magnetic resonance and provide a summary of related advances obtained during the last two decades. It also covers the emergence of new branches of the spectrum and anomalous dependencies on the magnetic field. Key Features: Reviews basic principles of the science of crystallographic symmetry and anisotropic solid-state properties Addresses the inhomogeneous nature of the distribution of the magnetization in the material being studied Explains the mathematic methods used in the calculation of anisotropic solids of a solid Provides the reader with a path to substitute electromagnetic waves when magnetostatic apparatus prove insufficient
Magnetostatic waves (MSWs) in magnetodielectric media are fundamental for the creation of various highly efficient devices for analog information processing in the microwave range. These devices include various filters, delay lines, phase shifters, frequency converters, nonreciprocal and nonlinear devices, and others. Magnetostatic Waves in Inhomogeneous Fields examines magnetostatic waves and their distribution in non-uniformly magnetized films and structures. The propagation of magnetostatic waves in magnetodielectric environments is accompanied by numerous and very diverse physical effects, sharply distinguishing them from ordinary electromagnetic waves in isotropic media. The authors address dispersion properties and noncollinearity of phase and group velocity vectors, as well as non-reciprocal propagation. Key Features Offers mathematical tools used in the calculation of properties of magnetostatic waves Includes a current literature review of magnetostatic waves and domain structures in garnet-ferrite films Considers the issue of converting magnetostatic waves into electromagnetic ones
Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.
Heavy electrons are found among a number of lanthanide and actinide compounds, and are characterized by a large effective mass which becomes comparable to the mass of a muon. Heavy electrons exhibit rich phenomena such as unconventional superconductivity, weak anti- ferromagnetism, or pseudo meta-magnetism. This book is intended not only as a monograph, but can readily serve as an advanced textbook on theoretical and experimental physics of strongly correlated electrons. Over the last two decades, heavy electrons have been the focus of very active experimental and theoretical studies. Many established ideas and techniques have been insufficient to describe and understand heavy electrons and their impact properly. On the theoretical side, quantum fluctuations make mean-field theories difficult to handle, while on the experimental side, extreme conditions such as strong magnetic fields and pressure at ultra-low temperatures may be required. Heavy electron systems as described in this book offer a case study for applying and testing most of the major tools in theoretical and experimental condensed matter physics. Graduate students and researchers working on strongly correlated condensed matter systems will find in this book a comprehensive introduction and many examples how conventional concepts of solids may work or not work, and how they can be refined and sharpened in the context of heavy electron systems.
This monograph, suitable for use as an advanced text, presents the statistical mechanics of solids from the perspective of the material properties of the solid state.
This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.
This book explores why the properties of liquid crystals make them ideal for use in photovoltaic applications. It achieves this by presenting a description of the properties of liquid crystals and how their electronic properties compare to that of polymers used in organic photovoltaics. It explores how the type of liquid crystal chosen can help in improving the efficiency of the photovoltaics. It compares experimental and theoretical ways in which the efficiency is directly or indirectly estimated between the organic photovoltaics and the organic photovoltaics that contain a liquid crystal. It first introduces liquid crystals and their different varieties, before reviewing their electronic transfer properties and how they can improve efficiency. It is an ideal text for graduate students and young researches considering entering the area of photovoltaics - specifically, organic photovoltaics - who do not yet have knowledge of this field. Introduces the field of liquid crystals and provides basic information to those new to the field, in a concise and visual manner Describes which characteristics of a liquid crystal are most advantageous to use in photovoltaics Provides basic knowledge of photovoltaics for those who do not have previous knowledge of how they behave electronically
This monograph offers a comprehensive overview of diverse quantization phenomena in layered materials, covering current mainstream experimental and theoretical research studies, and presenting essential properties of layered materials along with a wealth of figures. This book illustrates commonly used synthesis methods of these 2D materials and compares the calculated results and experimental measurements, including novel features not yet reported. The book also discusses experimental measurements of magnetic quantization, theoretical modeling for studying systems and covers diversified magneto-electronic properties, magneto-optical selection rules, unusual quantum Hall conductivities, and single- and many-particle magneto-Coulomb excitations. Rich and unique behaviors are clearly revealed in few-layer graphene systems with distinct stacking configuration, stacking-modulated structures, silicon-doped lattices, bilayer silicene/germanene systems with the bottom-top and bottom-bottom buckling structures, monolayer and bilayer phosphorene systems, and quantum topological insulators. The generalized tight-binding model, the static and dynamic Kubo formulas, and the random-phase approximation are developed/modified to thoroughly explore the fundamental properties and propose the concise physical pictures. Different high-resolution experimental measurements are discussed in detail, and they are consistent with the theoretical predictions. Aimed at readers working in materials science, physics, and engineering this book should be useful for potential applications in energy storage, electronic devices, and optoelectronic devices. |
![]() ![]() You may like...
Advances in Microbial Physiology, Volume…
Robert K. Poole, David J. Kelly
Hardcover
R4,787
Discovery Miles 47 870
Symmetries, Differential Equations and…
Victor G. Kac, Peter J. Olver, …
Hardcover
R4,354
Discovery Miles 43 540
Advances in Semantic Media Adaptation…
Manolis Wallace, Marios C. Angelides, …
Hardcover
R4,405
Discovery Miles 44 050
Information Dynamics - Foundations and…
Gustavo Deco, Bernd Schurmann
Hardcover
R1,662
Discovery Miles 16 620
EMATs for Science and Industry…
Masahiko Hirao, Hirotsugu Ogi
Hardcover
R3,097
Discovery Miles 30 970
Arithmetic and Algebraic Circuits
Antonio Lloris Ruiz, Encarnacion Castillo Morales, …
Hardcover
R5,111
Discovery Miles 51 110
Biomolecular Structure and Dynamics…
Gerard Vergoten, Theo M. Theophanides
Hardcover
R2,503
Discovery Miles 25 030
|