![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
The monograph reviews various aspects of electronic properties of Dirac and Weyl semimetals. After a brief discussion of 2D Dirac semimetals, a comprehensive review of 3D materials is given. The description starts from an overview of the topological properties and symmetries of Dirac and Weyl semimetals. In addition, several low-energy models of Dirac and Weyl quasiparticles are presented. The key ab initio approaches and material realizations are given. The monograph includes detailed discussions of the surface Fermi arcs, anomalous transport properties, and collective modes of Dirac and Weyl semimetals. Superconductivity in these materials is briefly addressed.
This volume on Ultrafast Magnetism is a collection of articles presented at the international "Ultrafast Magnetization Conference" held at the Congress Center in Strasbourg, France, from October 28th to November 1st, 2013. This first conference, which is intended to be held every two years, received a wonderful attendance and gathered scientists from 27 countries in the field of Femtomagnetism, encompassing many theoretical and experimental research subjects related to the spins dynamics in bulk or nanostructured materials. The participants appreciated this unique opportunity for discussing new ideas and debating on various physical interpretations of the reported phenomena. The format of a single session with many oral contributions as well as extensive time for poster presentations allowed researchers to have a detailed overview of the field. Importantly, one could sense that, in addition to studying fundamental magnetic phenomena, ultrafast magnetism has entered in a phase where applied physics and engineering are playing an important role. Several devices are being proposed with exciting R&D perspectives in the near future, in particular for magnetic recording, time resolved magnetic imaging and spin polarized transport, therefore establishing connections between various aspects of modern magnetism. Simultaneously, the diversity of techniques and experimental configurations has flourished during the past years, employing in particular Xrays, visible, infra-red and terahertz radiations. It was also obvious that an important effort is being made for tracking the dynamics of spins and magnetic domains at the nanometer scale, opening the pathway to exciting future developments. The concerted efforts between theoretical and experimental approaches for explaining the dynamical behaviors of angular momentum and energy levels, on different classes of magnetic materials, are worth pointing out. Finally it was unanimously recognized that the quality of the scientific oral and poster presentations contributed to bring the conference to a very high international standard.
This practical and unique textbook explains the core areas of molecular spectroscopy as a classical teacher would. The author carefully explores and explains each concept, walking side by side with the student through carefully constructed text, pedagogy, and derivations to ensure comprehension of the basics before approaching higher level topics. The author incorporates both electric resonance and magnetic resonance in the textbook. Uses boxes to explain more difficult topics and provides derivations to demonstrate "how and why". Includes coverage of electronic and NMR spectroscopy, both in sufficient detail. Discusses the density matrix method and its use in electronic spectroscopy before addressing it in NMR. Includes a chapter on Vibrational and Rotational Coherence Spectroscopy. Each chapter ends with problems with varying level of difficulty.
This book is the third in a series of 4 books issued yearly as a deliverable of the research school established within the European Network of Excellence CMA (for Complex Metallic Alloys). It is written by reputed experts in the fields of surface physics and chemistry, metallurgy and process engineering, combining expertise found inside as well as outside the network.The CMA network focuses on the huge group of largely unknown multinary alloys and compounds formed with crystal structures based on giant unit cells containing clusters, with many tens or up to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties, which are mutually excluded in conventional materials: metallic electric conductivity combined with low thermal conductivity, combination of good light absorption with high-temperature stability, combination of high metallic hardness with reduced wetting by liquids, electrical and thermal resistance tuneable by composition variation, excellent resistance to corrosion, reduced cold-welding and adhesion, enhanced hydrogen storage capacity and light absorption, etc.The series of books will concentrate on: development of fundamental knowledge with the aim of understanding materials phenomena, technologies associated with the production, transformation and processing of knowledge-based multifunctional materials, surface engineering, support for new materials development and new knowledge-based higher performance materials for macro-scale applications.
This title covers the fundamentals of carbon nanomaterials in a logical and clear manner to make concepts accessible to researchers from different disciplines. It summarizes in a comprehensive manner recent technological and scientific accomplishments in the area of carbon nanomaterials and their application in lithium ion batteries The book also addresses all the components anodes, cathodes and electrolytes of lithium ion battery and discusses the technology of lithium ion batteries that can safely operate at high temperature.
Random walks have proven to be a useful model in understanding processes across a wide spectrum of scientific disciplines. Elements of the Random Walk is an introduction to some of the most powerful and general techniques used in the application of these ideas. The mathematical construct that runs through the analysis of the topics covered in this book, unifying the mathematical treatment, is the generating function. Although the reader is introduced to modern analytical tools, such as path-integrals and field-theoretical formalism, the book is self-contained in that basic concepts are developed and relevant fundamental findings fully discussed. Mathematical background is provided in supplements at the end of each chapter, when appropriate. This self-contained text will appeal to graduate students across science, engineering and mathematics who need to understand the applications of random walk techniques, as well as to established researchers.
This book helps you understand the basic properties of semiconductor quantum wells and superlattices and describes how they can be utilized for long-wavelength infrared detectors and imaging arrays. Includes 111 illustrations and 237 equations.
Certain small solid particles are surface-active at fluid interfaces and thus are able to stabilize materials previously considered impossible to stabilize in their absence. Liquid marbles, particle-coated non-sticking liquid droplets, represent one of these materials. Preparation of liquid marbles was described only about 15 years ago and they are now widely studied by many research groups and numerous applications of liquid marbles have been advanced. The book is written for postgraduates and researchers working on the area who are training to become chemists, soft matter physicists, materials scientists, and engineers.
X-ray absorption fine structure spectroscopy (XAFS) is a powerful and versatile technique for studying structures of materials in chemistry, physics, biology and other fields. This textbook is a comprehensive, practical guide to carrying out and interpreting XAFS experiments. Assuming only undergraduate-level physics and mathematics, the textbook is ideally suited for graduate students in physics and chemistry starting XAFS-based research. It contains concise executable example programs in Mathematica 7. Supplementary material available at www.cambridge.org/9780521767750 includes Mathematica code from the book, related Mathematica programs, and worked data analysis examples. The textbook addresses experiment, theory, and data analysis, but is not tied to specific data analysis programs or philosophies. This makes it accessible to a broad audience in the sciences, and a useful guide for researchers entering the subject.
The importance of the effective mass (EM) is already well known since the inception of solid-state physics and this first-of-its-kind monograph solely deals with the quantum effects in EM of heavily doped (HD) nanostructures. The materials considered are HD quantum confined nonlinear optical, III-V, II-VI, IV-VI, GaP, Ge, PtSb2, stressed materials, GaSb, Te, II-V, Bi2Te3, lead germanium telluride, zinc and cadmium diphosphides, and quantum confined III-V, II-VI, IV-VI, and HgTe/CdTe super-lattices with graded interfaces and effective mass super-lattices. The presence of intense light waves in optoelectronics and strong electric field in nano-devices change the band structure of semiconductors in fundamental ways, which have also been incorporated in the study of EM in HD quantized structures of optoelectronic compounds that control the studies of the HD quantum effect devices under strong fields. The importance of measurement of band gap in optoelectronic materials under intense external fields has also been discussed in this context. The influences of magnetic quantization, crossed electric and quantizing fields, electric field and light waves on the EM in HD semiconductors and super-lattices are discussed.The content of this book finds twenty-eight different applications in the arena of nano-science and nano-technology. This book contains 200 open research problems which form the integral part of the text and are useful for both PhD aspirants and researchers in the fields of condensed matter physics, materials science, solid state sciences, nano-science and technology and allied fields in addition to the graduate courses in semiconductor nanostructures. The book is written for post-graduate students, researchers, engineers and professionals in the fields of condensed matter physics, solid state sciences, materials science, nanoscience and technology and nanostructured materials in general.
The theoretical methods of quantum chemistry have matured to the point that accurate predictions can be made and experiments can be understood for a wide range of important gas-phase phenomena. A large part of this success can be attributed to the maturation of hierarchies of approximation, which allow one to approach very high accuracy, provided that sufficient computational resources are available. Until recently, these hierarchies have not been available in condensed-phase chemistry, but recent advances in the field have now led to a group of methods that are capable of reaching this goal. Accurate Condensed-Phase Quantum Chemistry addresses these new methods and the problems to which they can be applied. The book begins with an overview of periodic treatments of electron correlation, with an emphasis on the algorithmic features responsible for their computational efficiency. The first section of the book: Describes the Laplace-transform approach to periodic second-order perturbation theory (MP2) Examines local and density fitted schemes for MP2 in crystalline systems Presents test calculations for a variety of systems with small and medium-sized unit cells The next section focuses on methods based on treatment of the periodic solid in terms of fragments. This part of the book: Explores the incremental many-body scheme for electron correlation in solids, and describes progress towards metals and molecules on surfaces Describes the hierarchical method as an alternative fragment-based approach to electron correlation in crystalline solids, using conventional molecular electronic structure methods Examines electrostatically embedded many-body expansion for large systems, with an emphasis on molecular clusters and molecular liquids Explores delocalized and localized orbital approaches to the electronic structures of periodic and non-periodic solids Lastly, the book describes a practical method by which conventional molecular electronic structure theory can be applied to molecular liquids and solids. Along with the methodology, it presents results on small to medium water clusters as well as on liquid water.
Disordered magnetic systems enjoy non-trivial properties which are different and richer than those observed in their pure, non-disordered counterparts. These properties dramatically affect the thermodynamic behaviour and require specific theoretical treatment. This 2006 book deals with the theory of magnetic systems in the presence of frozen disorder, in particular paradigmatic and well-known spin models such as the Random Field Ising Model and the Ising Spin Glass. This is a unified presentation using a field theory language which covers mean field theory, dynamics and perturbation expansion within the same theoretical framework. Particular emphasis is given to the connections between different approaches such as statics vs. dynamics, microscopic vs. phenomenological models. The book introduces some useful and little-known techniques in statistical mechanics and field theory. This book will be of great interest to graduate students and researchers in statistical physics and basic field theory.
This third edition of one of the most important and best selling textbooks in statistical physics, is a graduate level text suitable for students in physics, chemistry, and materials science.The discussion of strongly interacting condensed matter systems has been expanded. A chapter on stochastic processes has also been added with emphasis on applications of the Fokker-Planck equation.The modern theory of phase transitions occupies a central place. The chapter devoted to the renormalization group approach is largely rewritten and includes a detailed discussion of the basic concepts and examples of both exact and approximate calculations. The development of the basic tools includes a chapter on computer simulations in which both Monte Carlo method and molecular dynamics are introduced, and a section on Brownian dynamics added.The theories are applied to a number of important systems such as liquids, liquid crystals, polymers, membranes, Bose condensation, superfluidity and superconductivity. There is also an extensive treatment of interacting Fermi and Bose systems, percolation theory and disordered systems in general.
This book presents recent results of basic research in the field of Raman scattering by optic and acoustic phonons in semiconductors, quantum wells and superlattices. It also describes various new applications for analytical materials research which have emerged alongside with scientific progress. Trends in Raman techniques and instrumentation and their implications for future developments are illustrated.
The book provides the broad knowledge on electromigration techniques including: theory of CE, description of instrumentation, theory and practice in micellar electrokinetic chromatography, isotachophoresis, capillary isoelectric focusing, capillary and planar electrochromatography (including description of instrumentation and packed and monolithic column preparation), 2D-gel electrophoresis (including sample preparation) and lab-on-a-chip systems. The book also provides the most recent examples of applications including food, environmental, pharmaceutical analysis as well as proteomics.
This thesis presents the discovery of a surprising phase transition between a topological and a broken symmetry phase. Phase transitions between broken symmetry phases involve a change in symmetry and those between topological phases require a change in topological order; in rare cases, however, transitions may occur between these two broad classes of phases in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. This thesis describes observations of such a special phase transition in the two-dimensional electron gas confined in the GaAs/AlGaAs structures. When tuned by hydrostatic pressure, the = 5/2 and = 7/2 fractional quantum Hall states, believed to be prototypical non-Abelian topological phases of the Pfaffian universality class, give way to an electronic nematic phase. Remarkably, the fractional quantum Hall states involved are due to pairing of emergent particles called composite fermions. The findings reported here, therefore, provide an interesting example of competition of pairing and nematicity. This thesis provides an introduction to quantum Hall physics of the two-dimensional electron gas, contains details of the high pressure experiments, and offers a discussion of the ramifications and of the origins of the newly reported phase transition.
In Bird of Passage by Rudolf Peierls, we find a paragraph in which he de scribes his Cambridge days in the 1930s: On these relativistic field theory] problems my main contacts were Dirac, and the younger theoreticians. These included in particular Nevill (now Sir Nevill) Mott, perhaps the friendliest among many kind and friendly people we met then. Professor Kamimura became associated with Sir Rudolf Peierls in the 1950s, when he translated, with his colleagues, Peierls's 1955 textbook, Quantum Theory of Solids, into Japanese. This edition, to which Sir Rudolf himself contributed a preface, benefitted early generations of Japanese solid state physicists. Later in 1974/5, during a sabbatical year spent at the Cavendish Laboratory, Professor Kamimura met and began a long association with Sir Nevill Mott. In particular, they developed ideas for disordered systems. One of the outcomes is a paper coauthored by them on ESR-induced variable range hopping in doped semiconductors. A series of works on disordered systems, together with those on two-dimensional systems, have served as building blocks for Physics of Interacting Electrons in Disordered Systems, in the International Series of Monographs on Physics, coauthored by Aoki and published in 1989 by the Oxford University Press. Soon after Professor Kamimura obtained a D. Sc. in 1959 for the work on the ligand field theory under the supervision ofMasao Kotani, his strong con nections in the international physical community began when he worked at the Bell Telephone Laboratories in 1961/64."
Emphasizing physics over mathematics, this popular, classroom-tested text helps advanced undergraduates acquire a sound physical understanding of wave phenomena. This second edition of Oscillations and Waves: An Introduction contains new widgets, animations in Python, and exercises, as well as updated chapter content throughout; continuing to ease the difficult transition for students between lower-division courses that mostly encompass algebraic equations and upper-division courses that rely on differential equations. Assuming familiarity with the laws of physics and college-level mathematics, the author covers aspects of optics that crucially depend on the wave-like nature of light, such as wave optics. Examples explore discrete mechanical, optical, and quantum mechanical systems; continuous gases, fluids, and elastic solids; electronic circuits; and electromagnetic waves. The text also introduces the conventional complex representation of oscillations and waves during the discussion of quantum mechanical waves. Features: Fully updated throughout and featuring new widgets, animations, and end of chapter exercises to enhance understanding Offers complete coverage of advanced topics in waves, such as electromagnetic wave propagation through the ionosphere Includes examples from mechanical systems, elastic solids, electronic circuits, optical systems, and other areas
Quantum Chemistry of Solids delivers a comprehensive account of the
main features and possibilities of LCAO methods for the first
principles calculations of electronic structure of periodic
systems. The first part describes the basic theory underlying the
LCAO methods applied to periodic systems and the use of
Hartree-Fock(HF), Density Function theory(DFT) and hybrid
Hamiltonians. The translation and site symmetry consideration is
included to establish connection between k-space solid -state
physics and real-space quantum chemistry. The inclusion of electron
correlation effects for periodic systems is considered on the basis
of localized crystalline orbitals. The possibilities of LCAO
methods for chemical bonding analysis in periodic systems are
discussed.
Linear induction accelerators are successfully used as power supplies for numerous devices of relativistic high-frequency electronics. This book addresses ways to solve physical and engineering problems arising in the calculation, design, modeling and operation of linear induction accelerators intended for supplying relativistic microwave devices. It reviews and analyzes both classic and recent studies on the topic of linear induction accelerators (LIA) for generating and amplifying microwave radiation by relativistic devices.
This study focuses on the development and application of computer models for the analysis of various solid materials at the atomic, molecular and macroscopic levels. Many of the papers incorporate environmental effects in the computer models, including space effects such as atomic oxygen, radiation, charged ions, microparticle impacts, temperature and photoexcitation. To better understand the topics covered and their interaction with the various elements presented, the book incorporates a flowchart detailing the contents of the papers and their relationship to the subject areas. The three main sections of the book cover: atomic and molecular processes; electronic structure and processes; and structure and properties.
Soft matters differ from hard ones essentially due to former's relatively weak interaction which is comparable to kBTrm (Trm = room temperature) - this results in the major characteristics of soft matters such as 'strong reactions upon weak actions'.Developed over a period of 10 years through soft matter physics lectures for both graduate and undergraduate students in Fudan University, this textbook not only concentrates on the basic interactions inside soft matters through a reductionist approach, but also introduces the exploratory works on the complexity of soft matters in methods of system science.Other important topics in soft matter physics which are included involve static and dynamic electrorheological (ER) effects - an important 'model animal' in the subject, granular media - which explains the thermodynamics of sands and its dynamics, and the Onsager principle of least energy dissipation rate which has been adapted in this textbook to see how it governs the optimal paths of a system's deviation from and restoration to equilibrium.The subject of soft matter physics is still in its infancy, making it highly exciting and attractive. If you like a challenging subject, you will most certainly fall in love with soft matter physics at first read!
This 1998 study introduces the physical principles of how and why crystals grow. The first three chapters recall the fundamental properties of crystal surfaces at equilibrium. The next six chapters describe simple models and basic concepts of crystal growth including diffusion, thermal smoothing of a surface, and applications to semiconductors. Following chapters examine more complex topics such as kinetic roughness, growth instabilities, and elastic effects. A brief closing chapter looks back at the crucial contributions of crystal growth in electronics during the twentieth century. The book focuses on growth using molecular beam epitaxy. Throughout, the emphasis is on the role played by statistical physics. Informative appendices, interesting exercises and an extensive bibliography reinforce the text.
Emphasizing physics over mathematics, this popular, classroom-tested text helps advanced undergraduates acquire a sound physical understanding of wave phenomena. This second edition of Oscillations and Waves: An Introduction contains new widgets, animations in Python, and exercises, as well as updated chapter content throughout; continuing to ease the difficult transition for students between lower-division courses that mostly encompass algebraic equations and upper-division courses that rely on differential equations. Assuming familiarity with the laws of physics and college-level mathematics, the author covers aspects of optics that crucially depend on the wave-like nature of light, such as wave optics. Examples explore discrete mechanical, optical, and quantum mechanical systems; continuous gases, fluids, and elastic solids; electronic circuits; and electromagnetic waves. The text also introduces the conventional complex representation of oscillations and waves during the discussion of quantum mechanical waves. Features: Fully updated throughout and featuring new widgets, animations, and end of chapter exercises to enhance understanding Offers complete coverage of advanced topics in waves, such as electromagnetic wave propagation through the ionosphere Includes examples from mechanical systems, elastic solids, electronic circuits, optical systems, and other areas |
![]() ![]() You may like...
Fractals - Concepts and Applications in…
Behzad Ghanbarian, Allen G Hunt
Hardcover
R4,791
Discovery Miles 47 910
Research Handbook on Employee Turnover
George Saridakis, Cary Cooper
Paperback
R1,445
Discovery Miles 14 450
|