![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
The reader shall find in the offered monograph a systematic presentation of scientific effects in the field of anisotropy studies reached by the author and his collaborators in the period of recent four decades: published and discussed in a number of papers and conference contributions. The central construction line of discussion is to be sought in the full and comprehensive analysis of ret: ) function defining the anisotropy coefficient varying during the tensile test. No doubt, this function can be considered as a nutshell carrier ofcomprehensive information about the essential features influencing the directionality of the studied material's plasticity. The function also provides the basis to elaborate methods used in the determination of such characteristics. In the historical presentation of literature in the field of plastic anisotropy, the original input was offered by W.M. Baldwin Jr., already in 1946, who observed the differentiated strain rates in three mutually perpendicular directions of the sample subjected to static tensile test. In the following years, further and expanded analysis of the problem was undertaken by Lankford, Hill, Gensamer, Jackson, Low and Smith.
This reference is for anyone involved with microwave design. It tackles the practical aspects of microwave statistical design and introduces statistical design techniques that encompass many different applications. This presentation focuses on two main example areas - microwave circuits and systems - but any application with a complex relation between design variables and performance and design variable uncertainty can benefit from statistical design.
This is the second volume of Advances in Acoustic Microscopy. It continues the aim of presenting applications and developments of techniques that are related to high-resolution acoustic imaging. We are very grateful to the authors who have devoted considerable time to preparing these chapters, each of which describes a field of growing importance. Laboratories that have high-performance acoustic microscopes are frequently asked to examine samples for which the highest available resolution is not necessary, and the ability to penetrate opaque layers is more significant. Such applications can be thought of as bridging the gap be tween acoustic microscopy at low gigahertz frequencies, and on the one hand nondestructive testing of materials at low megahertz frequencies and on the other hand medical ultrasonic imaging at low megahertz frequencies. Commercial acoustic microscopes are becoming increasingly available and popular for such applications. We are therefore delighted to be able to begin the volume with chapters from each of those two fields. The first chapter, by Gabriele Pfannschmidt, describes uses of acoustic microscopy in the semiconductor industry. It provides a splendid balance to the opening chapter of Volume 1, which came from a national research center, being written from within a major European electronics industry itself. Dr Pfann schmidt describes the use of two quite different types of acoustic microscopes, and points out the advantages of each for specific purposes.
TheAdvancedResearchWorkshop"NewTrendsinIntegrabilityandPartial Solvability"(ARW. 978791) tookplaceinthebeautifulsettingoftheFaculty ofMedicineofC adizUniversity'smainroomonJune13-15,2002. Although thenumberofparticipantswas 30, thelectureswereattendedbymorethan one hundred researchers from around the world who were also attending the NEEDS 2002 meeting. Theaim of the organizers was to take advantage of these events to bring together researchers from the ?eld of integrable systems and/or from the particular subject of partial integrability, in view of the current interest in combining methods and ideas arising from both areas. A widevariety of topics were covered in the talks andthe subsequent discussions, including the analysis of reductions and solutions of integrable nonlinear partial di?erential equations and dynamical systems, new me- ods for the analysis of initial-boundary value problems for linear partial di?erential equations, quasi-exactly solvable Bose systems, the geometric theory of ordinarydi?erential equations, exactly and partially solvable spin models, the theory of nonlocal symmetries of di?erential equations, and superintegrable systems. Theworkshop revealed the growing importance of the theory of integrable system as well as the emerging theory of partially solvable systems. The present volume contains a series of invited contributions describing the background and recent developments of the main subjects discussed in the workshop. Special emphasis has been laid on providing self-contained and detailed presentations of the theory. M. J. Ablowitz and J. Villarroel give a detailed description of the inverse scattering for the KP equation, a keystone in the theory of integrable s- tems."
This ASI brought together a diverse group of experts who span virology, biology, biophysics, chemistry, physics and engineering. Prominent lecturers representing world renowned scientists from nine (9) different countries, and students from around the world representing eighteen (18) countries, participated in the ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). The central hypothesis underlying this ASI was that interdisciplinary research, merging principles of physics, chemistry and biology, can drive new discovery in detecting and fighting chemical and bioterrorism agents, lead to cleaner environments and improved energy sources, and help propel development in NATO partner countries. At the end of the ASI students had an appreciation of how to apply each technique to their own particular research problem and to demonstrate that multifaceted approaches and new technologies are needed to solve the biological challenges of our time. The course succeeded in training a new generation of biologists and chemists who will probe the molecular basis for life and disease.
This book had its origins in lectures presented at EPFL, Lausanne, during two separate visits (the most recent being to IRRMA). The author is most grateful to Professors A. Baldereschi, R. Car, and A. Quattropani for making these visits possible, and for the splendidly stimulating environment provided. Professors S. Baroni and R. Resta also influenced considerably the presentation of material by constructive help and comments. Most importantly, Chapters 4 and 5 were originally prepared for a review article by Professor G. Senatore, then at Pavia and now in Trieste, and myself for Reviews of Modem Physics (1994). In the 'course of this collaboration, he has taught me a great deal, especially about quantum Monte Carlo procedures, and Chapter 5 is based directly on this review article. Also in Chapter 4, my original draft on Gutzwiller's method has been transformed by his deeper understanding; again this is reflected directly in Chapter 4; especially in the earlier sections. In addition to the above background, it is relevant here to point out that, as a backcloth for the present, largely "state of the art," account, there are two highly relevant earlier books: The Many-body Problem in Quantum Mechanics with W.
The original Russian edition is based on a lecture course given by the author and provides a modern treatment of the physics of superconductors with special attention paid to the physical interpretation of the phenomena. This revised English translation has been enlarged by the inclusion of such new developments as High Temperature Superconductivity, and, as such, is the most up-to-date textbook on the subject available. The editor, Paul Müller, is himself a winner of the Walter Schottky Award for Solid State Research.
This book is concerned primarily with the fundamental theory underlying the physical and chemical properties of crystalIine semiconductors. After basic introductory material on chemical bonding, electronic band structure, phonons, and electronic transport, some emphasis is placed on surface and interfacial properties, as weil as effects of doping with a variety of impurities. Against this background, the use of such materials in device physics is examined and aspects of materials preparation are discussed briefty. The level of presentation is suitable for postgraduate students and research workers in solid-state physics and chemistry, materials science, and electrical and electronic engineering. Finally, it may be of interest to note that this book originated in a College organized at the International Centre for Theoretical Physics, Trieste, in Spring 1984. P. N. Butcher N. H. March M. P. Tosi vii Contents 1. Bonds and Bands in Semiconductors 1 E. Mooser 1. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 2. The Semiconducting Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3. Bond Approach Versus Band Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4. Construction of the Localized X by Linear Combination of n Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 5. The General Octet Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 6. The Aufbau-Principle of the Crystal Structure of Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 7. A Building Principle for Polyanionic Structures . . . . . . . . . . . . . . . . . . . . . . 29 I. H. Structural Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1. 9. Chemical Bonds and Semiconductivity in Transition-Element Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1. 10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2. Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 G. Grosso 2. 1. Two Different Strategies for Band-Structure Calculations . . . . . . . 55 2. 2. The Tight-Binding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O: H-O) and the anomalous behavior of water and ice under cooling, compressing and clustering. The target audience for this book includes scientists, engineers and practitioners in the area of surface science and nanoscience
A serendipitous discovery in nuclear physics has led to a useful tool in materials science. In the late 1950s, scientists at General Electric (among them the author) discovered that when mica is exposed to energetic charged particles (such as are emitted in radioactive decay or occur in cosmic rays), the particles leave latent tracks in the material. When such a material is chemically etched, the tracks are revealed as narrow, deep pits, whose size and shape is determined both by the particle that made the track and by the technique used in etching. It soon turned out that glass, plastics, or certain other materials can be similarly treated. This discovery paved the way not only for a new and useful method of measuring radioactivity, it has also found widespread applications in other fields, ranging from geology and materials science to archaeology and art history. Thus, for example, naturally produced tracks can be used to estimate the age of a mineral deposit or an archaeological material; and deliberately produced tracks can be used to make extremely fine filters. Fleischer presents the history of these developments and discusses the applications of the technique in a way that will be interesting to anyone with a minimal knowledge of physics.
Porous media are ubiquitous throughout nature and in many modern technologies. Because of their omnipresent nature, porous media are studied to one degree or another in almost all branches of science and engineering. This text is an outgrowth of a two-semester graduate course on multiscale porous media offered to students in applied math, physics, chemistry, engineering (civil, chemical, mechanical, agricultural), and environmental and soil science. The text is largely based on Dr Cushmans' groups efforts to build a rational approach to studying porous media over a hierarchy of spatial and temporal scales. No other text covers porous media on scales ranging from angstroms to miles. Nor does any other text develop and use such a diversity of tools for their study. The text is designed to be self-contained, as it presents all relevant mathematical and physical constructs.
Group theoretical concepts elucidate fundamental physical phenomena, including excitation spectra of quantum systems and complex geometrical structures such as molecules and crystals. These concepts are extensively covered in numerous textbooks. The aim of the present monograph is to illuminate more subtle aspects featuring group theory for quantum mechanics, that is, the concept of dynamical symmetry. Dynamical symmetry groups complement the conventional groups: their elements induce transitions between states belonging to different representations of the symmetry group of the Hamiltonian. Dynamical symmetry appears as a hidden symmetry in the hydrogen atom and quantum rotator problem, but its main role is manifested in nano and meso systems. Such systems include atomic clusters, large molecules, quantum dots attached to metallic electrodes, etc. They are expected to be the building blocks of future quantum electronic devices and information transmitting algorithms. Elucidation of the electronic properties of such systems is greatly facilitated by applying concepts of dynamical group theory.
A very comprehensive book, enabling the reader to understand the basic formalisms used in electronic structure determination and particularly the "Muffin Tin Orbitals" methods. The latest developments are presented, providing a very detailed description of the "Full Potential" schemes. This book will provide a real state of the art, since almost all of the contributions on formalism have not been, and will not be, published elsewhere. This book will become a standard reference volume. Moreover, applications in very active fields of today's research on magnetism are presented. A wide spectrum of such questions is covered by this book. For instance, the paper on interlayer exchange coupling should become a "classic," since there has been fantastic experimental activity for 10 years and this can be considered to be the "final" theoretical answer to this question. This work has never been presented in such a complete form.
The workshop on "Optical Properties of Low Dimensional Silicon sL Structures" was held in Meylan, France on March, I yd, 1993. The workshop took place inside the facilities of France Telecom- CNET. Around 45 leading scientists working on this rapidly moving field were in attendance. Principal support was provided by the Advanced Research Workshop Program of the North Atlantic Treaty Organisation (NATO). French Delegation a l'Armement and CNET gave also a small financial grant, the organisational part being undertaken by the SEE and CNET. There is currently intense research activity worldwide devoted to the optical properties of low dimensional silicon structures. This follow the recent discovery of efficient visible photoluminescence (PL) from highly porous silicon. This workshop was intended to bring together all the leading European scientists and laboratories in order to reveal the state of the art and to open new research fields on this subject. A large number of invited talks took place (12) together with regular contribution (20). The speakers were asked to leave nearly 1/3 of the time to the discussion with the audience, and that promoted both formal and informal discussions between the participants.
The present work offers a snapshot of the state-of-the-art of crystallographic, analytical, and computational methods used in modern drug design and development. Topics discussed include: drug design against complex systems (membrane proteins, cell surface receptors, epigenetic targets, and ribosomes); modulation of protein-protein interactions; the impact of small molecule structures in drug discovery and the application of concepts such as molecular geometry, conformation, and flexibility to drug design; methodologies for understanding and characterizing protein states and protein-ligand interactions during the drug design process; and monoclonal antibody therapies. These methods are illustrated through their application to problems of medical and biological significance, such as viral and bacterial infections, diabetes, autoimmune disease, and CNS diseases. As approaches to drug discovery have changed over time, so have the methodologies used to solve the varied, new, and difficult problems encountered in drug discovery. In recent years we have seen great progress in the fields of genetics, biology, chemistry, and medicine, but there are still many unmet medical needs, from bacterial infections to cancer to chronic maladies, that require novel, different, or better therapies. This work will be of interest to researchers and policy makers interested in the latest developments in drug design.
"Blurb & Contents" "Copies of Onnes's or Meissner's lab notebooks--this is the stuff of science. This book is truly a tour de force. I cannot think of a single person working in the area of superconductivity who would not be totally absorbed by it." Materials & Design The first truly comprehensive history of superconductivity, from the first studies in the late 19th century to the present. It delves deeply into a largely undocumented early history, marked by H. Kamerlingh Onnes's first successes with mercury in 1911 and extending to the onset of World War II. Also encompasses materials development of the fifties, the work that culminated in the BCS theory of the early sixties, and the important recent application of ceramic oxides.
This book provides an interdisciplinary overview of a new and broad class of materials under the unifying name Nanostructured Soft Matter. It covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles.
This work tries to provide an elementary introduction to the notions of continuum limit and universality in statistical systems with a large number of degrees of freedom. The existence of a continuum limit requires the appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature. In this context, we will emphasize the role of gaussian distributions and their relations with the mean field approximation and Landau's theory of critical phenomena. We will show that quasi-gaussian or mean-field approximations cannot describe correctly phase transitions in three space dimensions. We will assign this difficulty to the coupling of very different physical length scales, even though the systems we will consider have only local, that is, short range interactions. To analyze the unusual situation, a new concept is required: the renormalization group, whose fixed points allow understanding the universality of physical properties at large distance beyond mean-field theory. In the continuum limit, critical phenomena can be described by quantum field theories. In this framework, the renormalization group is directly related to the renormalization process, that is, the necessity to cancel the infinities that arise in straightforward formulations of the theory. We thus discuss the renormalization group in the context of various relevant field theories. This leads to proofs of universality and to efficient tools for calculating universal quantities in a perturbative framework. Finally, we construct a general functional renormalization group, which can be used when perturbative methods are inadequate.
In this revised and expanded edition, the authors provide a comprehensive overview of the tools, technologies, and physical models needed to understand, build, and analyze microdevices. Students, specialists within the field, and researchers in related fields will appreciate their unified presentation and extensive references.
Topological defects are generic in continuous media. In the relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids, low-density atomic Bose-Einstein condensates and neutron stars as quantized vortex lines. This collection of articles by leading scientists presents a modern treatment of the physics of vortex matter, mainly applied to unconventional superconductors and superfluids but with extensions to other areas of physics.
Essentially, Orientations and Rotations treats the mathematical and computational foundations of texture analysis. It contains an extensive and thorough introduction to parameterizations and geometry of the rotation space. Since the notions of orientations and rotations are of primary importance for science and engineering, the book can be useful for a very broad audience using rotations in other fields.
"Light is a Messenger" is the first biography of William Lawrence Bragg, who was only 25 when he won the 1915 Nobel Prize in Physics - the youngest person ever to win a Nobel Prize. It describes how Bragg discovered the use of X-rays to determine the arrangement of atoms in crystals and his pivotal role in developing this technique to the point that structures of the most complex molecules known to Man - the proteins and nucleic acids - could be solved. Although Bragg's Nobel Prize was for physics, his research profoundly affected chemistry and the new field of molecular biology, of which he became a founding figure. This book explains how these revolutionary scientific events occurred while Bragg struggled to emerge from the shadow of his father, Sir William Bragg, and amidst a career-long rivalry with the brilliant American chemist, Linus Pauling.
Few books exist that cover the hot field of second-generation spintronic devices, despite their potential to revolutionize the IT industry.Compiling the obstacles and progress of spin-controlled devices into one source, Spintronic Materials and Technology presents an in-depth examination of the most recent technological spintronic developments. Featuring contributions from active researchers and leading experts, the book chronicles the main research challenges in spintronics. It first depicts the different classes of materials systems currently under investigation for use in spintronic devices. The contributors also address issues concerning the operation of spintronic devices, such as the new principle for future devices that use spin-polarized current. This promises to enable switching of individual spin components of the device while avoiding crosstalk at the nanoscale. The book concludes with descriptions of both Si and III-V semiconductor-based spin transistors and the integration of spin technology with photonics. The second-generation spintronic devices discussed in Spintronic Materials and Technology will not only improve the existing capabilities of electronic transistors, but will enable future computers to run faster and consume less power. |
![]() ![]() You may like...
Digital Geometry Algorithms…
Valentin E. Brimkov, Reneta P. Barneva
Hardcover
R2,946
Discovery Miles 29 460
Geometric Level Set Methods in Imaging…
Stanley Osher, Nikos Paragios
Hardcover
R2,990
Discovery Miles 29 900
Cutting Down - An Evidence-based CBT…
Lucy Taylor, Mima Simic, …
Paperback
R1,281
Discovery Miles 12 810
Progress in Industrial Mathematics at…
Istvan Farago, Ferenc Izsak, …
Hardcover
R5,717
Discovery Miles 57 170
Making a Machine That Sees Like Us
Zygmunt Pizlo, Yunfeng Li, …
Hardcover
R2,395
Discovery Miles 23 950
Borderline Personality Disorder…
Leonard Horwitz, Glen O. Gabbard, …
Hardcover
|