![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Gain useful insights from your data using popular data science tools Key Features A one-stop guide to Python libraries such as pandas and NumPy Comprehensive coverage of data science operations such as data cleaning and data manipulation Choose scalable learning algorithms for your data science tasks Book DescriptionFully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You'll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users What you will learn Set up your data science toolbox on Windows, Mac, and Linux Use the core machine learning methods offered by the scikit-learn library Manipulate, fix, and explore data to solve data science problems Learn advanced explorative and manipulative techniques to solve data operations Optimize your machine learning models for optimized performance Explore and cluster graphs, taking advantage of interconnections and links in your data Who this book is forIf you're a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.
Integrate open source data analytics and build business intelligence on SQL databases with Apache Superset. The quick, intuitive nature for data visualization in a web application makes it easy for creating interactive dashboards. Key Features Work with Apache Superset's rich set of data visualizations Create interactive dashboards and data storytelling Easily explore data Book DescriptionApache Superset is a modern, open source, enterprise-ready business intelligence (BI) web application. With the help of this book, you will see how Superset integrates with popular databases like Postgres, Google BigQuery, Snowflake, and MySQL. You will learn to create real time data visualizations and dashboards on modern web browsers for your organization using Superset. First, we look at the fundamentals of Superset, and then get it up and running. You'll go through the requisite installation, configuration, and deployment. Then, we will discuss different columnar data types, analytics, and the visualizations available. You'll also see the security tools available to the administrator to keep your data safe. You will learn how to visualize relationships as graphs instead of coordinates on plain orthogonal axes. This will help you when you upload your own entity relationship dataset and analyze the dataset in new, different ways. You will also see how to analyze geographical regions by working with location data. Finally, we cover a set of tutorials on dashboard designs frequently used by analysts, business intelligence professionals, and developers. What you will learn Get to grips with the fundamentals of data exploration using Superset Set up a working instance of Superset on cloud services like Google Compute Engine Integrate Superset with SQL databases Build dashboards with Superset Calculate statistics in Superset for numerical, categorical, or text data Understand visualization techniques, filtering, and grouping by aggregation Manage user roles and permissions in Superset Work with SQL Lab Who this book is forThis book is for data analysts, BI professionals, and developers who want to learn Apache Superset. If you want to create interactive dashboards from SQL databases, this book is what you need. Working knowledge of Python will be an advantage but not necessary to understand this book.
Explore and understand data with the powerful data visualization techniques of Tableau, and then communicate insights in powerful ways Key Features Apply best practices in data visualization and chart types exploration Explore the latest version of Tableau Desktop with hands-on examples Understand the fundamentals of Tableau storytelling Book DescriptionGraphical presentation of data enables us to easily understand complex data sets. Tableau 10 Complete Reference provides easy-to-follow recipes with several use cases and real-world business scenarios to get you up and running with Tableau 10. This Learning Path begins with the history of data visualization and its importance in today's businesses. You'll also be introduced to Tableau - how to connect, clean, and analyze data in this visual analytics software. Then, you'll learn how to apply what you've learned by creating some simple calculations in Tableau and using Table Calculations to help drive greater analysis from your data. Next, you'll explore different advanced chart types in Tableau. These chart types require you to have some understanding of the Tableau interface and understand basic calculations. You'll study in detail all dashboard techniques and best practices. A number of recipes specifically for geospatial visualization, analytics, and data preparation are also covered. Last but not least, you'll learn about the power of storytelling through the creation of interactive dashboards in Tableau. Through this Learning Path, you will gain confidence and competence to analyze and communicate data and insights more efficiently and effectively by creating compelling interactive charts, dashboards, and stories in Tableau. This Learning Path includes content from the following Packt products: Learning Tableau 10 - Second Edition by Joshua N. Milligan Getting Started with Tableau 2018.x by Tristan Guillevin What you will learn Build effective visualizations, dashboards, and story points Build basic to more advanced charts with step-by-step recipes Become familiar row-level, aggregate, and table calculations Dig deep into data with clustering and distribution models Prepare and transform data for analysis Leverage Tableau's mapping capabilities to visualize data Use data storytelling techniques to aid decision making strategy Who this book is forTableau 10 Complete Reference is designed for anyone who wants to understand their data better and represent it in an effective manner. It is also used for BI professionals and data analysts who want to do better at their jobs.
A comprehensive guide to making machine data accessible across the organization using advanced dashboards Key Features Enrich machine-generated data and transform it into useful, meaningful insights Perform search operations and configurations, build dashboards, and manage logs Extend Splunk services with scripts and advanced configurations to process optimal results Book DescriptionSplunk is the leading platform that fosters an efficient methodology and delivers ways to search, monitor, and analyze growing amounts of big data. This book will allow you to implement new services and utilize them to quickly and efficiently process machine-generated big data. We introduce you to all the new features, improvements, and offerings of Splunk 7. We cover the new modules of Splunk: Splunk Cloud and the Machine Learning Toolkit to ease data usage. Furthermore, you will learn to use search terms effectively with Boolean and grouping operators. You will learn not only how to modify your search to make your searches fast but also how to use wildcards efficiently. Later you will learn how to use stats to aggregate values, a chart to turn data, and a time chart to show values over time; you'll also work with fields and chart enhancements and learn how to create a data model with faster data model acceleration. Once this is done, you will learn about XML Dashboards, working with apps, building advanced dashboards, configuring and extending Splunk, advanced deployments, and more. Finally, we teach you how to use the Machine Learning Toolkit and best practices and tips to help you implement Splunk services effectively and efficiently. By the end of this book, you will have learned about the Splunk software as a whole and implemented Splunk services in your tasks at projects What you will learn Focus on the new features of the latest version of Splunk Enterprise 7 Master the new offerings in Splunk: Splunk Cloud and the Machine Learning Toolkit Create efficient and effective searches within the organization Master the use of Splunk tables, charts, and graph enhancements Use Splunk data models and pivots with faster data model acceleration Master all aspects of Splunk XML dashboards with hands-on applications Create and deploy advanced Splunk dashboards to share valuable business insights with peers Who this book is forThis book is intended for data analysts, business analysts, and IT administrators who want to make the best use of big data, operational intelligence, log management, and monitoring within their organization. Some knowledge of Splunk services will help you get the most out of the book
Learn to view, edit and analyse geospatial data using QGIS and Python 3 Key Features Leverage the power of QGIS to add professionalism to your maps Explore and work with the newly released features like Python 3, GeoPackage, 3D views, Print layouts in QGIS 3.4 Build your own plugins and customize maps using QT designer Book DescriptionQGIS 3.4 is the first LTR (long term release) of QGIS version 3. This is a giant leap forward for the project with tons of new features and impactful changes. Learn QGIS is fully updated for QGIS 3.4, covering its processing engine update, Python 3 de-facto coding environment, and the GeoPackage format. This book will help you get started on your QGIS journey, guiding you to develop your own processing pathway. You will explore the user interface, loading your data, editing, and then creating data. QGIS often surprises new users with its mapping capabilities; you will discover how easily you can style and create your first map. But that's not all! In the final part of the book, you'll learn about spatial analysis and the powerful tools in QGIS, and conclude by looking at Python processing options. By the end of the book, you will have become proficient in geospatial analysis using QGIS and Python. What you will learn Explore various ways to load data into QGIS Understand how to style data and present it in a map Create maps and explore ways to expand them Get acquainted with the new processing toolbox in QGIS 3.4 Manipulate your geospatial data and gain quality insights Understand how to customize QGIS 3.4 Work with QGIS 3.4 in 3D Who this book is forIf you are a developer or consultant familiar with the basic functions and processes of GIS and want to learn how to use QGIS to analyze geospatial data and create rich mapping applications, this book is for you. You'll also find this book useful if you're new to QGIS and wish to grasp its fundamentals
Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key Features Make a hands-on start in the fields of Big Data, Distributed Technologies and Machine Learning Learn how to design, develop and interpret the results of common Machine Learning algorithms Uncover hidden patterns in your data in order to derive real actionable insights and business value Book DescriptionEvery person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learn Understand how Spark fits in the context of the big data ecosystem Understand how to deploy and configure a local development environment using Apache Spark Understand how to design supervised and unsupervised learning models Build models to perform NLP, deep learning, and cognitive services using Spark ML libraries Design real-time machine learning pipelines in Apache Spark Become familiar with advanced techniques for processing a large volume of data by applying machine learning algorithms Who this book is forThis book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.
Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key Features Build independent machine learning (ML) systems leveraging the best features of R 3.5 Understand and apply different machine learning techniques using real-world examples Use methods such as multi-class classification, regression, and clustering Book DescriptionGiven the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You'll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you'll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You'll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you'll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you'll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learn Prepare data for machine learning methods with ease Understand how to write production-ready code and package it for use Produce simple and effective data visualizations for improved insights Master advanced methods, such as Boosted Trees and deep neural networks Use natural language processing to extract insights in relation to text Implement tree-based classifiers, including Random Forest and Boosted Tree Who this book is forThis book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.
Data Analysis in Criminal Justice and Criminology: History, Concept, and Application breaks down various data analysis techniques to help students build their conceptual understanding of key methods and processes. The information in the text encourages discussion and consideration of how and why data analysis plays an important role in the fields of criminal justice and criminology. The book is divided into three units. Unit 1 discusses how data analysis is used in criminal justice and criminology, various methods of data collection, the importance of identifying the purpose of analysis and key data elements prior to analyzing information, and graphical representation of data. Unit 2 introduces students to samples, distributions, and the central limit theorem as it relates to data analysis. This section provides students with the essential knowledge and skills needed to understand statistical concepts and calculations. The final unit explains how to move beyond statistical description to statistical inference and how sample statistics can be used to estimate population parameters. Highly accessible in nature, Data Analysis in Criminal Justice and Criminology is ideal for undergraduate and graduate courses in criminal justice, criminology, and sociology especially those with emphasis on data analysis.
Build efficient, high-performance & scalable systems to process large volumes of data with Apache Ignite Key Features Understand Apache Ignite's in-memory technology Create High-Performance app components with Ignite Build a real-time data streaming and complex event processing system Book DescriptionApache Ignite is a distributed in-memory platform designed to scale and process large volume of data. It can be integrated with microservices as well as monolithic systems, and can be used as a scalable, highly available and performant deployment platform for microservices. This book will teach you to use Apache Ignite for building a high-performance, scalable, highly available system architecture with data integrity. The book takes you through the basics of Apache Ignite and in-memory technologies. You will learn about installation and clustering Ignite nodes, caching topologies, and various caching strategies, such as cache aside, read and write through, and write behind. Next, you will delve into detailed aspects of Ignite's data grid: web session clustering and querying data. You will learn how to process large volumes of data using compute grid and Ignite's map-reduce and executor service. You will learn about the memory architecture of Apache Ignite and monitoring memory and caches. You will use Ignite for complex event processing, event streaming, and the time-series predictions of opportunities and threats. Additionally, you will go through off-heap and on-heap caching, swapping, and native and Spring framework integration with Apache Ignite. By the end of this book, you will be confident with all the features of Apache Ignite 2.x that can be used to build a high-performance system architecture. What you will learn Use Apache Ignite's data grid and implement web session clustering Gain high performance and linear scalability with in-memory distributed data processing Create a microservice on top of Apache Ignite that can scale and perform Perform ACID-compliant CRUD operations on an Ignite cache Retrieve data from Apache Ignite's data grid using SQL, Scan and Lucene Text query Explore complex event processing concepts and event streaming Integrate your Ignite app with the Spring framework Who this book is forThe book is for Big Data professionals who want to learn the essentials of Apache Ignite. Prior experience in Java is necessary.
Implement real-world decentralized applications using Python, Vyper, Populus, and Ethereum Key Features Stay up-to-date with everything you need to know about the blockchain ecosystem Implement smart contracts, wallets, and decentralized applications(DApps) using Python libraries Get deeper insights into storing content in a distributed storage platform Book DescriptionBlockchain is seen as the main technological solution that works as a public ledger for all cryptocurrency transactions. This book serves as a practical guide to developing a full-fledged decentralized application with Python to interact with the various building blocks of blockchain applications. Hands-On Blockchain for Python Developers starts by demonstrating how blockchain technology and cryptocurrency hashing works. You will understand the fundamentals and benefits of smart contracts such as censorship resistance and transaction accuracy. As you steadily progress, you'll go on to build smart contracts using Vyper, which has a similar syntax to Python. This experience will further help you unravel the other benefits of smart contracts, including reliable storage and backup, and efficiency. You'll also use web3.py to interact with smart contracts and leverage the power of both the web3.py and Populus framework to build decentralized applications that offer security and seamless integration with cryptocurrencies. As you explore later chapters, you'll learn how to create your own token on top of Ethereum and build a cryptocurrency wallet graphical user interface (GUI) that can handle Ethereum and Ethereum Request for Comments (ERC-20) tokens using the PySide2 library. This will enable users to seamlessly store, send, and receive digital money. Toward the end, you'll implement InterPlanetary File System (IPFS) technology in your decentralized application to provide a peer-to-peer filesystem that can store and expose media. By the end of this book, you'll be well-versed in blockchain programming and be able to build end-to-end decentralized applications on a range of domains using Python. What you will learn Understand blockchain technology and what makes it an immutable database Use the features of web3.py API to interact with the smart contract Create your own cryptocurrency and token in Ethereum using Vyper Use IPFS features to store content on the decentralized storage platform Implement a Twitter-like decentralized application with a desktop frontend Build decentralized applications in the shape of console, web, and desktop applications Who this book is forIf you are a Python developer who wants to enter the world of blockchain, Hands-On Blockchain for Python Developers is for you. The book will be your go-to guide to becoming well-versed with the blockchain ecosystem and building your own decentralized applications using Python and library support.
Make sense of your data and predict the unpredictable About This Book * A unique book that centers around develop six key practical skills needed to develop and implement predictive analytics * Apply the principles and techniques of predictive analytics to effectively interpret big data * Solve real-world analytical problems with the help of practical case studies and real-world scenarios taken from the world of healthcare, marketing, and other business domains Who This Book Is For This book is for those with a mathematical/statistics background who wish to understand the concepts, techniques, and implementation of predictive analytics to resolve complex analytical issues. Basic familiarity with a programming language of R is expected. What You Will Learn * Master the core predictive analytics algorithm which are used today in business * Learn to implement the six steps for a successful analytics project * Classify the right algorithm for your requirements * Use and apply predictive analytics to research problems in healthcare * Implement predictive analytics to retain and acquire your customers * Use text mining to understand unstructured data * Develop models on your own PC or in Spark/Hadoop environments * Implement predictive analytics products for customers In Detail This is the go-to book for anyone interested in the steps needed to develop predictive analytics solutions with examples from the world of marketing, healthcare, and retail. We'll get started with a brief history of predictive analytics and learn about different roles and functions people play within a predictive analytics project. Then, we will learn about various ways of installing R along with their pros and cons, combined with a step-by-step installation of RStudio, and a description of the best practices for organizing your projects. On completing the installation, we will begin to acquire the skills necessary to input, clean, and prepare your data for modeling. We will learn the six specific steps needed to implement and successfully deploy a predictive model starting from asking the right questions through model development and ending with deploying your predictive model into production. We will learn why collaboration is important and how agile iterative modeling cycles can increase your chances of developing and deploying the best successful model. We will continue your journey in the cloud by extending your skill set by learning about Databricks and SparkR, which allow you to develop predictive models on vast gigabytes of data. Style and Approach This book takes a practical hands-on approach wherein the algorithms will be explained with the help of real-world use cases. It is written in a well-researched academic style which is a great mix of theoretical and practical information. Code examples are supplied for both theoretical concepts as well as for the case studies. Key references and summaries will be provided at the end of each chapter so that you can explore those topics on their own.
Discover the new features and widely used packages in Julia to solve complex computational problems in your statistical applications. Key Features Address the core problems of programming in Julia with the most popular packages for common tasks Tackle issues while working with Databases and Parallel data processing with Julia Explore advanced features such as metaprogramming, functional programming, and user defined types Book DescriptionJulia, with its dynamic nature and high-performance, provides comparatively minimal time for the development of computational models with easy-to-maintain computational code. This book will be your solution-based guide as it will take you through different programming aspects with Julia. Starting with the new features of Julia 1.0, each recipe addresses a specific problem, providing a solution and explaining how it works. You will work with the powerful Julia tools and data structures along with the most popular Julia packages. You will learn to create vectors, handle variables, and work with functions. You will be introduced to various recipes for numerical computing, distributed computing, and achieving high performance. You will see how to optimize data science programs with parallel computing and memory allocation. We will look into more advanced concepts such as metaprogramming and functional programming. Finally, you will learn how to tackle issues while working with databases and data processing, and will learn about on data science problems, data modeling, data analysis, data manipulation, parallel processing, and cloud computing with Julia. By the end of the book, you will have acquired the skills to work more effectively with your data What you will learn Boost your code's performance using Julia's unique features Organize data in to fundamental types of collections: arrays and dictionaries Organize data science processes within Julia and solve related problems Scale Julia computations with cloud computing Write data to IO streams with Julia and handle web transfer Define your own immutable and mutable types Speed up the development process using metaprogramming Who this book is forThis book is for developers who would like to enhance their Julia programming skills and would like to get some quick solutions to their common programming problems. Basic Julia programming knowledge is assumed.
Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book DescriptionPython is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is forThis book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Build a strong foundation of machine learning algorithms in 7 days Key Features Use Python and its wide array of machine learning libraries to build predictive models Learn the basics of the 7 most widely used machine learning algorithms within a week Know when and where to apply data science algorithms using this guide Book DescriptionMachine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well. Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis. By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem What you will learn Understand how to identify a data science problem correctly Implement well-known machine learning algorithms efficiently using Python Classify your datasets using Naive Bayes, decision trees, and random forest with accuracy Devise an appropriate prediction solution using regression Work with time series data to identify relevant data events and trends Cluster your data using the k-means algorithm Who this book is forThis book is for aspiring data science professionals who are familiar with Python and have a little background in statistics. You'll also find this book useful if you're currently working with data science algorithms in some capacity and want to expand your skill set
Put your Haskell skills to work and generate publication-ready visualizations in no time at all Key Features Take your data analysis skills to the next level using the power of Haskell Understand regression analysis, perform multivariate regression, and untangle different cluster varieties Create publication-ready visualizations of data Book DescriptionEvery business and organization that collects data is capable of tapping into its own data to gain insights how to improve. Haskell is a purely functional and lazy programming language, well-suited to handling large data analysis problems. This book will take you through the more difficult problems of data analysis in a hands-on manner. This book will help you get up-to-speed with the basics of data analysis and approaches in the Haskell language. You'll learn about statistical computing, file formats (CSV and SQLite3), descriptive statistics, charts, and progress to more advanced concepts such as understanding the importance of normal distribution. While mathematics is a big part of data analysis, we've tried to keep this course simple and approachable so that you can apply what you learn to the real world. By the end of this book, you will have a thorough understanding of data analysis, and the different ways of analyzing data. You will have a mastery of all the tools and techniques in Haskell for effective data analysis. What you will learn Learn to parse a CSV file and read data into the Haskell environment Create Haskell functions for common descriptive statistics functions Create an SQLite3 database using an existing CSV file Learn the versatility of SELECT queries for slicing data into smaller chunks Apply regular expressions in large-scale datasets using both CSV and SQLite3 files Create a Kernel Density Estimator visualization using normal distribution Who this book is forThis book is intended for people who wish to expand their knowledge of statistics and data analysis via real-world examples. A basic understanding of the Haskell language is expected. If you are feeling brave, you can jump right into the functional programming style.
Demographic Methods and Concepts makes accessible the most commonly needed techniques for working with population statistics, irrespective of the reader's mathematical background. For the first time in such a text, concepts and practical strategies needed in the interpretation of demographic indices and data are included. Spreadsheet training exercises enable students to acquire the computer skills needed for demographic work. The accompanying free CD-ROM contains innovative, fully integrated learning modules as well as applications facilitating demographic studies.
Get unique insights from your data by combining the power of SQL Server, R and Python Key Features Use the features of SQL Server 2017 to implement the data science project life cycle Leverage the power of R and Python to design and develop efficient data models find unique insights from your data with powerful techniques for data preprocessing and analysis Book DescriptionSQL Server only started to fully support data science with its two most recent editions. If you are a professional from both worlds, SQL Server and data science, and interested in using SQL Server and Machine Learning (ML) Services for your projects, then this is the ideal book for you. This book is the ideal introduction to data science with Microsoft SQL Server and In-Database ML Services. It covers all stages of a data science project, from businessand data understanding,through data overview, data preparation, modeling and using algorithms, model evaluation, and deployment. You will learn to use the engines and languages that come with SQL Server, including ML Services with R and Python languages and Transact-SQL. You will also learn how to choose which algorithm to use for which task, and learn the working of each algorithm. What you will learn Use the popular programming languages,T-SQL, R, and Python, for data science Understand your data with queries and introductory statistics Create and enhance the datasets for ML Visualize and analyze data using basic and advanced graphs Explore ML using unsupervised and supervised models Deploy models in SQL Server and perform predictions Who this book is forSQL Server professionals who want to start with data science, and data scientists who would like to start using SQL Server in their projects will find this book to be useful. Prior exposure to SQL Server will be helpful.
Become the master player of data exploration by creating reproducible data processing pipelines, visualizations, and prediction models for your applications. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts such as SVM, KNN classifiers, and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book DescriptionGetting started with data science doesn't have to be an uphill battle. Applied Data Science with Python and Jupyter is a step-by-step guide ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction to these concepts. In this book, you'll learn every aspect of the standard data workflow process, including collecting, cleaning, investigating, visualizing, and modeling data. You'll start with the basics of Jupyter, which will be the backbone of the book. After familiarizing ourselves with its standard features, you'll look at an example of it in practice with our first analysis. In the next lesson, you dive right into predictive analytics, where multiple classification algorithms are implemented. Finally, the book ends by looking at data collection techniques. You'll see how web data can be acquired with scraping techniques and via APIs, and then briefly explore interactive visualizations. What you will learn Get up and running with the Jupyter ecosystem Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is forApplied Data Science with Python and Jupyter is ideal for professionals with a variety of job descriptions across a large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries such as Pandas, Matplotlib, and Pandas providing you a useful head start.
Progressively explore UI development with Shiny via practical examples Key Features Write a Shiny interface in pure HTML Explore powerful layout functions to make attractive dashboards and other intuitive interfaces Get to grips with Bootstrap and leverage it in your Shiny applications Book DescriptionAlthough vanilla Shiny applications look attractive with some layout flexibility, you may still want to have more control over how the interface is laid out to produce a dashboard. Hands-On Dashboard Development with Shiny helps you incorporate this in your applications. The book starts by guiding you in producing an application based on the diamonds dataset included in the ggplot2 package. You'll create a single application, but the interface will be reskinned and rebuilt throughout using different methods to illustrate their uses and functions using HTML, CSS, and JavaScript. You will also learn to develop an application that creates documents and reports using R Markdown. Furthermore, the book demonstrates the use of HTML templates and the Bootstrap framework. Moving along, you will learn how to produce dashboards using the Shiny command and dashboard package. Finally, you will learn how to lay out applications using a wide range of built-in functions. By the end of the book, you will have an understanding of the principles that underpin layout in Shiny applications, including sections of HTML added to a vanilla Shiny application, HTML interfaces written from scratch, dashboards, navigation bars, and interfaces. What you will learn Add HTML to a Shiny application and write its interfaces from scratch in HTML Use built-in Shiny functions to produce attractive and flexible layouts Produce dashboards, adding icons and notifications Explore Bootstrap themes to lay out your applications Get insights into UI development with hands-on examples Use R Markdown to create and download reports Who this book is forIf you have some experience writing Shiny applications and want to use HTML, CSS, and Bootstrap to make custom interfaces, then this book is for you.
With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web Key Features Build industry-standard recommender systems Only familiarity with Python is required No need to wade through complicated machine learning theory to use this book Book DescriptionRecommendation systems are at the heart of almost every internet business today; from Facebook to Netflix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform. This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory-you'll get started with building and learning about recommenders as quickly as possible.. In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains. What you will learn Get to grips with the different kinds of recommender systems Master data-wrangling techniques using the pandas library Building an IMDB Top 250 Clone Build a content based engine to recommend movies based on movie metadata Employ data-mining techniques used in building recommenders Build industry-standard collaborative filters using powerful algorithms Building Hybrid Recommenders that incorporate content based and collaborative fltering Who this book is forIf you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.
From data to actionable business insights using Amazon QuickSight! About This Book * A practical hands-on guide to improving your business with the power of BI and Quicksight * Immerse yourself with an end-to-end journey for effective analytics using QuickSight and related services * Packed with real-world examples with Solution Architectures needed for a cloud-powered Business Intelligence service Who This Book Is For This book is for Business Intelligence architects, BI developers, Big Data architects, and IT executives who are looking to modernize their business intelligence architecture and deliver a fast, easy-to-use, cloud powered business intelligence service. What You Will Learn * Steps to test drive QuickSight and see how it fits in AWS big data eco system * Load data from various sources such as S3, RDS, Redshift, Athena, and SalesForce and visualize using QuickSight * Understand how to prepare data using QuickSight without the need of an IT developer * Build interactive charts, reports, dashboards, and storyboards using QuickSight * Access QuickSight using the mobile application * Architect and design for AWS Data Lake Solution, leveraging AWS hosted services * Build a big data project with step-by-step instructions for data collection, cataloguing, and analysis * Secure your data used for QuickSight from S3, RedShift, and RDS instances * Manage users, access controls, and SPICE capacity In Detail Amazon QuickSight is the next-generation Business Intelligence (BI) cloud service that can help you build interactive visualizations on top of various data sources hosted on Amazon Cloud Infrastructure. QuickSight delivers responsive insights into big data and enables organizations to quickly democratize data visualizations and scale to hundreds of users at a fraction of the cost when compared to traditional BI tools. This book begins with an introduction to Amazon QuickSight, feature differentiators from traditional BI tools, and how it fits in the overall AWS big data ecosystem. With practical examples, you will find tips and techniques to load your data to AWS, prepare it, and finally visualize it using QuickSight. You will learn how to build interactive charts, reports, dashboards, and stories using QuickSight and share with others using just your browser and mobile app. The book also provides a blueprint to build a real-life big data project on top of AWS Data Lake Solution and demonstrates how to build a modern data lake on the cloud with governance, data catalog, and analysis. It reviews the current product shortcomings, features in the roadmap, and how to provide feedback to AWS. Grow your profits, improve your products, and beat your competitors. Style and approach This book takes a fast-paced, example-driven approach to demonstrate the power of QuickSight to improve your business' efficiency. Every chapter is accompanied with a use case that shows the practical implementation of the step being explained.
Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow's capabilities to perform efficient deep learning Book DescriptionTensorFlow is Google's popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow's capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is forHands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.
Understand the Ethereum platform to build distributed applications that are secured and decentralized using blockchain technology Key Features Build your own decentralized applications using real-world blockchain examples Implement Ethereum for building smart contracts and cryptocurrency applications with easy-to-follow projects Enhance your application security with blockchain Book DescriptionEthereum enables the development of efficient, smart contracts that contain code. These smart contracts can interact with other smart contracts to make decisions, store data, and send Ether to others.Ethereum Projects for Beginners provides you with a clear introduction to creating cryptocurrencies, smart contracts, and decentralized applications. As you make your way through the book, you'll get to grips with detailed step-by-step processes to build advanced Ethereum projects. Each project will teach you enough about Ethereum to be productive right away. You will learn how tokenization works, think in a decentralized way, and build blockchain-based distributed computing systems. Towards the end of the book, you will develop interesting Ethereum projects such as creating wallets and secure data sharing.By the end of this book, you will be able to tackle blockchain challenges by implementing end-to-end projects using the full power of the Ethereum blockchain. What you will learn Develop your ideas fast and efficiently using the Ethereum blockchain Make writing and deploying smart contracts easy and manageable Work with private data in blockchain applications Handle large files in blockchain applications Ensure your decentralized applications are safe Explore how Ethereum development frameworks work Create your own cryptocurrency or token on the Ethereum blockchain Make sure your cryptocurrency is ERC20-compliant to launch an ICO Who this book is forThis book is for individuals who want to build decentralized applications using blockchain technology and the power of Ethereum from scratch. Some prior knowledge of JavaScript is required, since most examples use a web frontend.
This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive. Key Features Grasp the skills needed to write efficient Hive queries to analyze the Big Data Discover how Hive can coexist and work with other tools within the Hadoop ecosystem Uses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3 Book DescriptionIn this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment. Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey. By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problems What you will learn Create and set up the Hive environment Discover how to use Hive's definition language to describe data Discover interesting data by joining and filtering datasets in Hive Transform data by using Hive sorting, ordering, and functions Aggregate and sample data in different ways Boost Hive query performance and enhance data security in Hive Customize Hive to your needs by using user-defined functions and integrate it with other tools Who this book is forIf you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book. |
![]() ![]() You may like...
Demystifying Graph Data Science - Graph…
Pethuru Raj, Abhishek Kumar, …
Hardcover
Data Analytics for Social Microblogging…
Soumi Dutta, Asit Kumar Das, …
Paperback
R3,543
Discovery Miles 35 430
Machine Learning and Data Analytics for…
Manikant Roy, Lovi Raj Gupta
Hardcover
R11,492
Discovery Miles 114 920
AIoT Technologies and Applications for…
Mamoun Alazab, Meenu Gupta, …
Hardcover
|