0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (7)
  • R250 - R500 (61)
  • R500+ (1,224)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Databases > Data capture & analysis

Python Automation Cookbook - 75 Python automation ideas for web scraping, data wrangling, and processing Excel, reports,... Python Automation Cookbook - 75 Python automation ideas for web scraping, data wrangling, and processing Excel, reports, emails, and more, 2nd Edition (Paperback, 2nd Revised edition)
Jaime Buelta
R1,243 Discovery Miles 12 430 Ships in 10 - 15 working days

Get a firm grip on the core processes including browser automation, web scraping, Word, Excel, and GUI automation with Python 3.8 and higher Key Features Automate integral business processes such as report generation, email marketing, and lead generation Explore automated code testing and Python's growth in data science and AI automation in three new chapters Understand techniques to extract information and generate appealing graphs, and reports with Matplotlib Book DescriptionIn this updated and extended version of Python Automation Cookbook, each chapter now comprises the newest recipes and is revised to align with Python 3.8 and higher. The book includes three new chapters that focus on using Python for test automation, machine learning projects, and for working with messy data. This edition will enable you to develop a sharp understanding of the fundamentals required to automate business processes through real-world tasks, such as developing your first web scraping application, analyzing information to generate spreadsheet reports with graphs, and communicating with automatically generated emails. Once you grasp the basics, you will acquire the practical knowledge to create stunning graphs and charts using Matplotlib, generate rich graphics with relevant information, automate marketing campaigns, build machine learning projects, and execute debugging techniques. By the end of this book, you will be proficient in identifying monotonous tasks and resolving process inefficiencies to produce superior and reliable systems. What you will learn Learn data wrangling with Python and Pandas for your data science and AI projects Automate tasks such as text classification, email filtering, and web scraping with Python Use Matplotlib to generate a variety of stunning graphs, charts, and maps Automate a range of report generation tasks, from sending SMS and email campaigns to creating templates, adding images in Word, and even encrypting PDFs Master web scraping and web crawling of popular file formats and directories with tools like Beautiful Soup Build cool projects such as a Telegram bot for your marketing campaign, a reader from a news RSS feed, and a machine learning model to classify emails to the correct department based on their content Create fire-and-forget automation tasks by writing cron jobs, log files, and regexes with Python scripting Who this book is forPython Automation Cookbook - Second Edition is for developers, data enthusiasts or anyone who wants to automate monotonous manual tasks related to business processes such as finance, sales, and HR, among others. Working knowledge of Python is all you need to get started with this book.

SQL Server 2019 Administrator's Guide - A definitive guide for DBAs to implement, monitor, and maintain enterprise... SQL Server 2019 Administrator's Guide - A definitive guide for DBAs to implement, monitor, and maintain enterprise database solutions, 2nd Edition (Paperback, 2nd Revised edition)
Marek Chmel, Vladimir Muzny
R1,351 Discovery Miles 13 510 Ships in 10 - 15 working days

Use Microsoft SQL Server 2019 to implement, administer, and secure a robust database solution that is disaster-proof and highly available Key Features Explore new features of SQL Server 2019 to set up, administer, and maintain your database solution successfully Develop a dynamic SQL Server environment and streamline big data pipelines Discover best practices for fixing performance issues, database access management, replication, and security Book DescriptionSQL Server is one of the most popular relational database management systems developed by Microsoft. This second edition of the SQL Server Administrator's Guide will not only teach you how to administer an enterprise database, but also help you become proficient at managing and keeping the database available, secure, and stable. You'll start by learning how to set up your SQL Server and configure new and existing environments for optimal use. The book then takes you through designing aspects and delves into performance tuning by showing you how to use indexes effectively. You'll understand certain choices that need to be made about backups, implement security policy, and discover how to keep your environment healthy. Tools available for monitoring and managing a SQL Server database, including automating health reviews, performance checks, and much more, will also be discussed in detail. As you advance, the book covers essential topics such as migration, upgrading, and consolidation, along with the techniques that will help you when things go wrong. Once you've got to grips with integration with Azure and streamlining big data pipelines, you'll learn best practices from industry experts for maintaining a highly reliable database solution. Whether you are an administrator or are looking to get started with database administration, this SQL Server book will help you develop the skills you need to successfully create, design, and deploy database solutions. What you will learn Discover SQL Server 2019's new features and how to implement them Fix performance issues by optimizing queries and making use of indexes Design and use an optimal database management strategy Combine SQL Server 2019 with Azure and manage your solution using various automation techniques Implement efficient backup and recovery techniques in line with security policies Get to grips with migrating, upgrading, and consolidating with SQL Server Set up an AlwaysOn-enabled stable and fast SQL Server 2019 environment Understand how to work with Big Data on SQL Server environments Who this book is forThis book is for database administrators, database developers, and anyone who wants to administer large and multiple databases single-handedly using Microsoft's SQL Server 2019. Basic awareness of database concepts and experience with previous SQL Server versions is required.

Python Algorithmic Trading Cookbook - All the recipes you need to implement your own algorithmic trading strategies in Python... Python Algorithmic Trading Cookbook - All the recipes you need to implement your own algorithmic trading strategies in Python (Paperback)
Pushpak Dagade
R1,358 Discovery Miles 13 580 Ships in 10 - 15 working days

Build a solid foundation in algorithmic trading by developing, testing and executing powerful trading strategies with real market data using Python Key Features Build a strong foundation in algorithmic trading by becoming well-versed with the basics of financial markets Demystify jargon related to understanding and placing multiple types of trading orders Devise trading strategies and increase your odds of making a profit without human intervention Book DescriptionIf you want to find out how you can build a solid foundation in algorithmic trading using Python, this cookbook is here to help. Starting by setting up the Python environment for trading and connectivity with brokers, you'll then learn the important aspects of financial markets. As you progress, you'll learn to fetch financial instruments, query and calculate various types of candles and historical data, and finally, compute and plot technical indicators. Next, you'll learn how to place various types of orders, such as regular, bracket, and cover orders, and understand their state transitions. Later chapters will cover backtesting, paper trading, and finally real trading for the algorithmic strategies that you've created. You'll even understand how to automate trading and find the right strategy for making effective decisions that would otherwise be impossible for human traders. By the end of this book, you'll be able to use Python libraries to conduct key tasks in the algorithmic trading ecosystem. Note: For demonstration, we're using Zerodha, an Indian Stock Market broker. If you're not an Indian resident, you won't be able to use Zerodha and therefore will not be able to test the examples directly. However, you can take inspiration from the book and apply the concepts across your preferred stock market broker of choice. What you will learn Use Python to set up connectivity with brokers Handle and manipulate time series data using Python Fetch a list of exchanges, segments, financial instruments, and historical data to interact with the real market Understand, fetch, and calculate various types of candles and use them to compute and plot diverse types of technical indicators Develop and improve the performance of algorithmic trading strategies Perform backtesting and paper trading on algorithmic trading strategies Implement real trading in the live hours of stock markets Who this book is forIf you are a financial analyst, financial trader, data analyst, algorithmic trader, trading enthusiast or anyone who wants to learn algorithmic trading with Python and important techniques to address challenges faced in the finance domain, this book is for you. Basic working knowledge of the Python programming language is expected. Although fundamental knowledge of trade-related terminologies will be helpful, it is not mandatory.

Machine Learning Using TensorFlow Cookbook - Create powerful machine learning algorithms with TensorFlow (Paperback): Alexia... Machine Learning Using TensorFlow Cookbook - Create powerful machine learning algorithms with TensorFlow (Paperback)
Alexia Audevart, Konrad Banachewicz, Luca Massaron
R975 Discovery Miles 9 750 Ships in 10 - 15 working days

Comprehensive recipes to give you valuable insights on Transformers, Reinforcement Learning, and more Key Features Deep Learning solutions from Kaggle Masters and Google Developer Experts Get to grips with the fundamentals including variables, matrices, and data sources Learn advanced techniques to make your algorithms faster and more accurate Book DescriptionThe independent recipes in Machine Learning Using TensorFlow Cookbook will teach you how to perform complex data computations and gain valuable insights into your data. Dive into recipes on training models, model evaluation, sentiment analysis, regression analysis, artificial neural networks, and deep learning - each using Google's machine learning library, TensorFlow. This cookbook covers the fundamentals of the TensorFlow library, including variables, matrices, and various data sources. You'll discover real-world implementations of Keras and TensorFlow and learn how to use estimators to train linear models and boosted trees, both for classification and regression. Explore the practical applications of a variety of deep learning architectures, such as recurrent neural networks and Transformers, and see how they can be used to solve computer vision and natural language processing (NLP) problems. With the help of this book, you will be proficient in using TensorFlow, understand deep learning from the basics, and be able to implement machine learning algorithms in real-world scenarios. What you will learn Take TensorFlow into production Implement and fine-tune Transformer models for various NLP tasks Apply reinforcement learning algorithms using the TF-Agents framework Understand linear regression techniques and use Estimators to train linear models Execute neural networks and improve predictions on tabular data Master convolutional neural networks and recurrent neural networks through practical recipes Who this book is forIf you are a data scientist or a machine learning engineer, and you want to skip detailed theoretical explanations in favor of building production-ready machine learning models using TensorFlow, this book is for you. Basic familiarity with Python, linear algebra, statistics, and machine learning is necessary to make the most out of this book.

The The Data Science Workshop - Learn how you can build machine learning models and create your own real-world data science... The The Data Science Workshop - Learn how you can build machine learning models and create your own real-world data science projects, 2nd Edition (Paperback, 2nd Revised edition)
Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare
R1,087 Discovery Miles 10 870 Ships in 10 - 15 working days

Gain expert guidance on how to successfully develop machine learning models in Python and build your own unique data platforms Key Features Gain a full understanding of the model production and deployment process Build your first machine learning model in just five minutes and get a hands-on machine learning experience Understand how to deal with common challenges in data science projects Book DescriptionWhere there's data, there's insight. With so much data being generated, there is immense scope to extract meaningful information that'll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you'll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You'll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you'll get hands-on with approaches such as grid search and random search. Next, you'll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You'll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you'll have the skills to start working on data science projects confidently. By the end of this book, you'll have the skills to start working on data science projects confidently. What you will learn Explore the key differences between supervised learning and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Understand key concepts such as regression, classification, and clustering Discover advanced techniques to improve the accuracy of your model Understand how to speed up the process of adding new features Simplify your machine learning workflow for production Who this book is forThis is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going through all the mathematics behind machine learning algorithms. Basic knowledge of the Python programming language will help you easily grasp the concepts explained in this book.

Hands-On Graph Analytics with Neo4j - Perform graph processing and visualization techniques using connected data across your... Hands-On Graph Analytics with Neo4j - Perform graph processing and visualization techniques using connected data across your enterprise (Paperback)
Estelle Scifo
R1,199 Discovery Miles 11 990 Ships in 10 - 15 working days

Discover how to use Neo4j to identify relationships within complex and large graph datasets using graph modeling, graph algorithms, and machine learning Key Features Get up and running with graph analytics with the help of real-world examples Explore various use cases such as fraud detection, graph-based search, and recommendation systems Get to grips with the Graph Data Science library with the help of examples, and use Neo4j in the cloud for effective application scaling Book DescriptionNeo4j is a graph database that includes plugins to run complex graph algorithms. The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You'll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You'll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You'll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you'll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you'll get to grips with structuring a web application for production using Neo4j. By the end of this book, you'll not only be able to harness the power of graphs to handle a broad range of problem areas, but you'll also have learned how to use Neo4j efficiently to identify complex relationships in your data. What you will learn Become well-versed with Neo4j graph database building blocks, nodes, and relationships Discover how to create, update, and delete nodes and relationships using Cypher querying Use graphs to improve web search and recommendations Understand graph algorithms such as pathfinding, spatial search, centrality, and community detection Find out different steps to integrate graphs in a normal machine learning pipeline Formulate a link prediction problem in the context of machine learning Implement graph embedding algorithms such as DeepWalk, and use them in Neo4j graphs Who this book is forThis book is for data analysts, business analysts, graph analysts, and database developers looking to store and process graph data to reveal key data insights. This book will also appeal to data scientists who want to build intelligent graph applications catering to different domains. Some experience with Neo4j is required.

Python Data Analysis - Perform data collection, data processing, wrangling, visualization, and model building using Python... Python Data Analysis - Perform data collection, data processing, wrangling, visualization, and model building using Python (Paperback, 3rd Revised edition)
Avinash Navlani, Armando Fandango, Ivan Idris
R1,116 Discovery Miles 11 160 Ships in 10 - 15 working days

Understand data analysis pipelines using machine learning algorithms and techniques with this practical guide Key Features Prepare and clean your data to use it for exploratory analysis, data manipulation, and data wrangling Discover supervised, unsupervised, probabilistic, and Bayesian machine learning methods Get to grips with graph processing and sentiment analysis Book DescriptionData analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you'll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you'll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You'll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you'll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you'll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you'll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data. What you will learn Explore data science and its various process models Perform data manipulation using NumPy and pandas for aggregating, cleaning, and handling missing values Create interactive visualizations using Matplotlib, Seaborn, and Bokeh Retrieve, process, and store data in a wide range of formats Understand data preprocessing and feature engineering using pandas and scikit-learn Perform time series analysis and signal processing using sunspot cycle data Analyze textual data and image data to perform advanced analysis Get up to speed with parallel computing using Dask Who this book is forThis book is for data analysts, business analysts, statisticians, and data scientists looking to learn how to use Python for data analysis. Students and academic faculties will also find this book useful for learning and teaching Python data analysis using a hands-on approach. A basic understanding of math and working knowledge of the Python programming language will help you get started with this book.

Telling Your Data Story - Data Storytelling for Data Management (Paperback): Scott Taylor Telling Your Data Story - Data Storytelling for Data Management (Paperback)
Scott Taylor
R731 R619 Discovery Miles 6 190 Save R112 (15%) Ships in 10 - 15 working days
Microsoft Power BI Demystified - step by step guide on how to create interactive dashboard and reports using Power BI... Microsoft Power BI Demystified - step by step guide on how to create interactive dashboard and reports using Power BI (Paperback)
Elijah Falode
R797 Discovery Miles 7 970 Ships in 10 - 15 working days
Zero to Data Viz as a Tableau Desktop Specialist (Paperback): John J Zugelder Zero to Data Viz as a Tableau Desktop Specialist (Paperback)
John J Zugelder
R1,019 R900 Discovery Miles 9 000 Save R119 (12%) Ships in 10 - 15 working days
Data Engineering with Python - Work with massive datasets to design data models and automate data pipelines using Python... Data Engineering with Python - Work with massive datasets to design data models and automate data pipelines using Python (Paperback)
Paul Crickard
R1,360 Discovery Miles 13 600 Ships in 10 - 15 working days

Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You'll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You'll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you'll build architectures on which you'll learn how to deploy data pipelines. By the end of this Python book, you'll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production. What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is forThis book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.

The The Applied Data Science Workshop - Get started with the applications of data science and techniques to explore and assess... The The Applied Data Science Workshop - Get started with the applications of data science and techniques to explore and assess data effectively, 2nd Edition (Paperback, 2nd Revised edition)
Alex Galea
R975 Discovery Miles 9 750 Ships in 10 - 15 working days

Designed with beginners in mind, this workshop helps you make the most of Python libraries and the Jupyter Notebook's functionality to understand how data science can be applied to solve real-world data problems. Key Features Gain useful insights into data science and machine learning Explore the different functionalities and features of a Jupyter Notebook Discover how Python libraries are used with Jupyter for data analysis Book DescriptionFrom banking and manufacturing through to education and entertainment, using data science for business has revolutionized almost every sector in the modern world. It has an important role to play in everything from app development to network security. Taking an interactive approach to learning the fundamentals, this book is ideal for beginners. You'll learn all the best practices and techniques for applying data science in the context of real-world scenarios and examples. Starting with an introduction to data science and machine learning, you'll start by getting to grips with Jupyter functionality and features. You'll use Python libraries like sci-kit learn, pandas, Matplotlib, and Seaborn to perform data analysis and data preprocessing on real-world datasets from within your own Jupyter environment. Progressing through the chapters, you'll train classification models using sci-kit learn, and assess model performance using advanced validation techniques. Towards the end, you'll use Jupyter Notebooks to document your research, build stakeholder reports, and even analyze web performance data. By the end of The Applied Data Science Workshop, you'll be prepared to progress from being a beginner to taking your skills to the next level by confidently applying data science techniques and tools to real-world projects. What you will learn Understand the key opportunities and challenges in data science Use Jupyter for data science tasks such as data analysis and modeling Run exploratory data analysis within a Jupyter Notebook Visualize data with pairwise scatter plots and segmented distribution Assess model performance with advanced validation techniques Parse HTML responses and analyze HTTP requests Who this book is forIf you are an aspiring data scientist who wants to build a career in data science or a developer who wants to explore the applications of data science from scratch and analyze data in Jupyter using Python libraries, then this book is for you. Although a brief understanding of Python programming and machine learning is recommended to help you grasp the topics covered in the book more quickly, it is not mandatory.

Getting Started with Google BERT - Build and train state-of-the-art natural language processing models using BERT (Paperback):... Getting Started with Google BERT - Build and train state-of-the-art natural language processing models using BERT (Paperback)
Sudharsan Ravichandiran
R1,178 Discovery Miles 11 780 Ships in 10 - 15 working days

Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key Features Explore the encoder and decoder of the transformer model Become well-versed with BERT along with ALBERT, RoBERTa, and DistilBERT Discover how to pre-train and fine-tune BERT models for several NLP tasks Book DescriptionBERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer's encoder and decoder work. You'll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you'll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you'll be well-versed with using BERT and its variants for performing practical NLP tasks. What you will learn Understand the transformer model from the ground up Find out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasks Get hands-on with BERT by learning to generate contextual word and sentence embeddings Fine-tune BERT for downstream tasks Get to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT models Get the hang of the BERT models based on knowledge distillation Understand cross-lingual models such as XLM and XLM-R Explore Sentence-BERT, VideoBERT, and BART Who this book is forThis book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.

Managing Data Science - Effective strategies to manage data science projects and build a sustainable team (Paperback): Kirill... Managing Data Science - Effective strategies to manage data science projects and build a sustainable team (Paperback)
Kirill Dubovikov
R912 Discovery Miles 9 120 Ships in 10 - 15 working days

Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key Features Learn the basics of data science and explore its possibilities and limitations Manage data science projects and assemble teams effectively even in the most challenging situations Understand management principles and approaches for data science projects to streamline the innovation process Book DescriptionData science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learn Understand the underlying problems of building a strong data science pipeline Explore the different tools for building and deploying data science solutions Hire, grow, and sustain a data science team Manage data science projects through all stages, from prototype to production Learn how to use ModelOps to improve your data science pipelines Get up to speed with the model testing techniques used in both development and production stages Who this book is forThis book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.

Python Data Cleaning Cookbook - Modern techniques and Python tools to detect and remove dirty data and extract key insights... Python Data Cleaning Cookbook - Modern techniques and Python tools to detect and remove dirty data and extract key insights (Paperback)
Michael Walker
R1,321 Discovery Miles 13 210 Ships in 10 - 15 working days

Discover how to describe your data in detail, identify data issues, and find out how to solve them using commonly used techniques and tips and tricks Key Features Get well-versed with various data cleaning techniques to reveal key insights Manipulate data of different complexities to shape them into the right form as per your business needs Clean, monitor, and validate large data volumes to diagnose problems before moving on to data analysis Book DescriptionGetting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data. By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it. What you will learn Find out how to read and analyze data from a variety of sources Produce summaries of the attributes of data frames, columns, and rows Filter data and select columns of interest that satisfy given criteria Address messy data issues, including working with dates and missing values Improve your productivity in Python pandas by using method chaining Use visualizations to gain additional insights and identify potential data issues Enhance your ability to learn what is going on in your data Build user-defined functions and classes to automate data cleaning Who this book is forThis book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data. Working knowledge of Python programming is all you need to get the most out of the book.

Hands-On SQL Server 2019 Analysis Services - Design and query tabular and multi-dimensional models using Microsoft's SQL... Hands-On SQL Server 2019 Analysis Services - Design and query tabular and multi-dimensional models using Microsoft's SQL Server Analysis Services (Paperback)
Steven Hughes; Foreword by Adam Jorgensen
R1,487 Discovery Miles 14 870 Ships in 10 - 15 working days

Get up to speed with the new features added to Microsoft SQL Server 2019 Analysis Services and create models to support your business Key Features Explore tips and tricks to design, develop, and optimize end-to-end data analytics solutions using Microsoft's technologies Learn tabular modeling and multi-dimensional cube design development using real-world examples Implement Analysis Services to help you make productive business decisions Book DescriptionSQL Server Analysis Services (SSAS) continues to be a leading enterprise-scale toolset, enabling customers to deliver data and analytics across large datasets with great performance. This book will help you understand MS SQL Server 2019's new features and improvements, especially when it comes to SSAS. First, you'll cover a quick overview of SQL Server 2019, learn how to choose the right analytical model to use, and understand their key differences. You'll then explore how to create a multi-dimensional model with SSAS and expand on that model with MDX. Next, you'll create and deploy a tabular model using Microsoft Visual Studio and Management Studio. You'll learn when and how to use both tabular and multi-dimensional model types, how to deploy and configure your servers to support them, and design principles that are relevant to each model. The book comes packed with tips and tricks to build measures, optimize your design, and interact with models using Excel and Power BI. All this will help you visualize data to gain useful insights and make better decisions. Finally, you'll discover practices and tools for securing and maintaining your models once they are deployed. By the end of this MS SQL Server book, you'll be able to choose the right model and build and deploy it to support the analytical needs of your business. What you will learn Determine the best analytical model using SSAS Cover the core aspects involved in MDX, including writing your first query Implement calculated tables and calculation groups (new in version 2019) in DAX Create and deploy tabular and multi-dimensional models on SQL 2019 Connect and create data visualizations using Excel and Power BI Implement row-level and other data security methods with tabular and multi-dimensional models Explore essential concepts and techniques to scale, manage, and optimize your SSAS solutions Who this book is forThis Microsoft SQL Server book is for BI professionals and data analysts who are looking for a practical guide to creating and maintaining tabular and multi-dimensional models using SQL Server 2019 Analysis Services. A basic working knowledge of BI solutions such as Power BI and database querying is required.

Python Data Analytics - The Beginner's Real World Crash Course (Paperback): Travis Booth Python Data Analytics - The Beginner's Real World Crash Course (Paperback)
Travis Booth
R525 Discovery Miles 5 250 Ships in 10 - 15 working days
Learn Power BI - Step by Step Guide to Building Your Own Reports (Paperback): Derek Wilson Learn Power BI - Step by Step Guide to Building Your Own Reports (Paperback)
Derek Wilson
R263 Discovery Miles 2 630 Ships in 10 - 15 working days
Practical Data Analysis Using Jupyter Notebook - Learn how to speak the language of data by extracting useful and actionable... Practical Data Analysis Using Jupyter Notebook - Learn how to speak the language of data by extracting useful and actionable insights using Python (Paperback)
Marc Wintjen; Foreword by Andrew Vlahutin
R1,058 Discovery Miles 10 580 Ships in 10 - 15 working days

Understand data analysis concepts to make accurate decisions based on data using Python programming and Jupyter Notebook Key Features Find out how to use Python code to extract insights from data using real-world examples Work with structured data and free text sources to answer questions and add value using data Perform data analysis from scratch with the help of clear explanations for cleaning, transforming, and visualizing data Book DescriptionData literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data. After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps. Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries. By the end of this book, you'll have gained the practical skills you need to analyze data with confidence. What you will learn Understand the importance of data literacy and how to communicate effectively using data Find out how to use Python packages such as NumPy, pandas, Matplotlib, and the Natural Language Toolkit (NLTK) for data analysis Wrangle data and create DataFrames using pandas Produce charts and data visualizations using time-series datasets Discover relationships and how to join data together using SQL Use NLP techniques to work with unstructured data to create sentiment analysis models Discover patterns in real-world datasets that provide accurate insights Who this book is forThis book is for aspiring data analysts and data scientists looking for hands-on tutorials and real-world examples to understand data analysis concepts using SQL, Python, and Jupyter Notebook. Anyone looking to evolve their skills to become data-driven personally and professionally will also find this book useful. No prior knowledge of data analysis or programming is required to get started with this book.

C# and Oledb - Working with the Dataview (Paperback): Richard Thomas Edwards C# and Oledb - Working with the Dataview (Paperback)
Richard Thomas Edwards
R376 Discovery Miles 3 760 Ships in 10 - 15 working days
C# And SQL CLient - Working with the Dataview (Paperback): Richard Thomas Edwards C# And SQL CLient - Working with the Dataview (Paperback)
Richard Thomas Edwards
R376 Discovery Miles 3 760 Ships in 10 - 15 working days
Hands-On SAS for Data Analysis - A practical guide to performing effective queries, data visualization, and reporting... Hands-On SAS for Data Analysis - A practical guide to performing effective queries, data visualization, and reporting techniques (Paperback)
Harish Gulati
R1,334 Discovery Miles 13 340 Ships in 10 - 15 working days

Leverage the full potential of SAS to get unique, actionable insights from your data Key Features Build enterprise-class data solutions using SAS and become well-versed in SAS programming Work with different data structures, and run SQL queries to manipulate your data Explore essential concepts and techniques with practical examples to confidently pass the SAS certification exam Book DescriptionSAS is one of the leading enterprise tools in the world today when it comes to data management and analysis. It enables the fast and easy processing of data and helps you gain valuable business insights for effective decision-making. This book will serve as a comprehensive guide that will prepare you for the SAS certification exam. After a quick overview of the SAS architecture and components, the book will take you through the different approaches to importing and reading data from different sources using SAS. You will then cover SAS Base and 4GL, understanding data management and analysis, along with exploring SAS functions for data manipulation and transformation. Next, you'll discover SQL procedures and get up to speed on creating and validating queries. In the concluding chapters, you'll learn all about data visualization, right from creating bar charts and sample geographic maps through to assigning patterns and formats. In addition to this, the book will focus on macro programming and its advanced aspects. By the end of this book, you will be well versed in SAS programming and have the skills you need to easily handle and manage your data-related problems in SAS. What you will learn Explore a variety of SAS modules and packages for efficient data analysis Use SAS 4GL functions to manipulate, merge, sort, and transform data Gain useful insights into advanced PROC SQL options in SAS to interact with data Get to grips with SAS Macro and define your own macros to share data Discover the different graphical libraries to shape and visualize data with Apply the SAS Output Delivery System to prepare detailed reports Who this book is forBudding or experienced data professionals who want to get started with SAS will benefit from this book. Those looking to prepare for the SAS certification exam will also find this book to be a useful resource. Some understanding of basic data management concepts will help you get the most out of this book.

Learning Geospatial Analysis with Python - Understand GIS fundamentals and perform remote sensing data analysis using Python... Learning Geospatial Analysis with Python - Understand GIS fundamentals and perform remote sensing data analysis using Python 3.7, 3rd Edition (Paperback, 3rd Revised edition)
Joel Lawhead
R1,574 Discovery Miles 15 740 Ships in 10 - 15 working days

Learn the core concepts of geospatial data analysis for building actionable and insightful GIS applications Key Features Create GIS solutions using the new features introduced in Python 3.7 Explore a range of GIS tools and libraries such as PostGIS, QGIS, and PROJ Learn to automate geospatial analysis workflows using Python and Jupyter Book DescriptionGeospatial analysis is used in almost every domain you can think of, including defense, farming, and even medicine. With this systematic guide, you'll get started with geographic information system (GIS) and remote sensing analysis using the latest features in Python. This book will take you through GIS techniques, geodatabases, geospatial raster data, and much more using the latest built-in tools and libraries in Python 3.7. You'll learn everything you need to know about using software packages or APIs and generic algorithms that can be used for different situations. Furthermore, you'll learn how to apply simple Python GIS geospatial processes to a variety of problems, and work with remote sensing data. By the end of the book, you'll be able to build a generic corporate system, which can be implemented in any organization to manage customer support requests and field support personnel. What you will learn Automate geospatial analysis workflows using Python Code the simplest possible GIS in just 60 lines of Python Create thematic maps with Python tools such as PyShp, OGR, and the Python Imaging Library Understand the different formats that geospatial data comes in Produce elevation contours using Python tools Create flood inundation models Apply geospatial analysis to real-time data tracking and storm chasing Who this book is forThis book is for Python developers, researchers, or analysts who want to perform geospatial modeling and GIS analysis with Python. Basic knowledge of digital mapping and analysis using Python or other scripting languages will be helpful.

Mastering PostgreSQL 13 - Build, administer, and maintain database applications efficiently with PostgreSQL 13, 4th Edition... Mastering PostgreSQL 13 - Build, administer, and maintain database applications efficiently with PostgreSQL 13, 4th Edition (Paperback, 4th Revised edition)
Hans-Jurgen Schoenig
R1,225 Discovery Miles 12 250 Ships in 10 - 15 working days

Explore expert techniques such as advanced indexing and high availability to build scalable, reliable, and fault-tolerant database applications using PostgreSQL 13 Key Features Master advanced PostgreSQL 13 concepts with the help of real-world datasets and examples Leverage PostgreSQL's indexing features to fine-tune the performance of your queries Extend PostgreSQL's functionalities to suit your organization's needs with minimal effort Book DescriptionThanks to its reliability, robustness, and high performance, PostgreSQL has become one of the most advanced open source databases on the market. This updated fourth edition will help you understand PostgreSQL administration and how to build dynamic database solutions for enterprise apps with the latest release of PostgreSQL, including designing both physical and technical aspects of the system architecture with ease. Starting with an introduction to the new features in PostgreSQL 13, this book will guide you in building efficient and fault-tolerant PostgreSQL apps. You'll explore advanced PostgreSQL features, such as logical replication, database clusters, performance tuning, advanced indexing, monitoring, and user management, to manage and maintain your database. You'll then work with the PostgreSQL optimizer, configure PostgreSQL for high speed, and move from Oracle to PostgreSQL. The book also covers transactions, locking, and indexes, and shows you how to improve performance with query optimization. You'll also focus on how to manage network security and work with backups and replication while exploring useful PostgreSQL extensions that optimize the performance of large databases. By the end of this PostgreSQL book, you'll be able to get the most out of your database by executing advanced administrative tasks. What you will learn Get well versed with advanced SQL functions in PostgreSQL 13 Get to grips with administrative tasks such as log file management and monitoring Work with stored procedures and manage backup and recovery Employ replication and failover techniques to reduce data loss Perform database migration from Oracle to PostgreSQL with ease Replicate PostgreSQL database systems to create backups and scale your database Manage and improve server security to protect your data Troubleshoot your PostgreSQL instance to find solutions to common and not-so-common problems Who this book is forThis database administration book is for PostgreSQL developers and database administrators and professionals who want to implement advanced functionalities and master complex administrative tasks with PostgreSQL 13. Prior experience in PostgreSQL and familiarity with the basics of database administration will assist with understanding key concepts covered in the book.

Innovative Psychometric Modeling and Methods (Paperback): Hong Jiao, Robert W. Lissitz Innovative Psychometric Modeling and Methods (Paperback)
Hong Jiao, Robert W. Lissitz
R1,540 Discovery Miles 15 400 Ships in 10 - 15 working days

The general theme of this book is to present innovative psychometric modeling and methods. In particular, this book includes research and successful examples of modeling techniques for new data sources from digital assessments, such as eye-tracking data, hint uses, and process data from game-based assessments. In addition, innovative psychometric modeling approaches, such as graphical models, item tree models, network analysis, and cognitive diagnostic models, are included. Chapters 1, 2, 4 and 6 are about psychometric models and methods for learning analytics. The first two chapters focus on advanced cognitive diagnostic models for tracking learning and the improvement of attribute classification accuracy. Chapter 4 demonstrates the use of network analysis for learning analytics. Chapter 6 introduces the conjunctive root causes model for the understanding of prerequisite skills in learning. Chapters 3, 5, 8, 9 are about innovative psychometric techniques to model process data. Specifically, Chapters 3 and 5 illustrate the usage of generalized linear mixed effect models and item tree models to analyze eye-tracking data. Chapter 8 discusses the modeling approach of hint uses and response accuracy in learning environment. Chapter 9 demonstrates the identification of observable outcomes in the game-based assessments. Chapters 7 and 10 introduce innovative latent variable modeling approaches, including the graphical and generalized linear model approach and the dynamic modeling approach. In summary, the book includes theoretical, methodological, and applied research and practices that serve as the foundation for future development. These chapters provide illustrations of efforts to model and analyze multiple data sources from digital assessments. When computer-based assessments are emerging and evolving, it is important that researchers can expand and improve the methods for modeling and analyzing new data sources. This book provides a useful resource to researchers who are interested in the development of psychometric methods to solve issues in this digital assessment age.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Deep Learning For Beginners - 2…
Steven Cooper Hardcover R812 R704 Discovery Miles 7 040
Data Analytics for Social Microblogging…
Soumi Dutta, Asit Kumar Das, … Paperback R3,454 Discovery Miles 34 540
Data Science From Scratch - The #1 Data…
Steven Cooper Hardcover R705 R610 Discovery Miles 6 100
Active Mining - New Directions of Data…
H. Motoda Hardcover R2,157 Discovery Miles 21 570
Implementing Analytics - A Blueprint for…
Nauman Sheikh Paperback R971 Discovery Miles 9 710
Interactive Reports in SAS(R) Visual…
Nicole Ball Hardcover R1,765 Discovery Miles 17 650
Convergence of Big Data Technologies and…
Govind P. Gupta Hardcover R7,390 Discovery Miles 73 900
Advanced Classification Techniques for…
Chinmay Chakraborty Hardcover R7,803 Discovery Miles 78 030
Queer Data - Using Gender, Sex and…
Kevin Guyan Hardcover R2,447 Discovery Miles 24 470
Intelligent Data Analysis for e-Learning…
Jorge Miguel, Santi Caballe, … Paperback R2,627 R2,401 Discovery Miles 24 010

 

Partners