0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (68)
  • R500+ (1,214)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Databases > Data capture & analysis

Hands-On SAS for Data Analysis - A practical guide to performing effective queries, data visualization, and reporting... Hands-On SAS for Data Analysis - A practical guide to performing effective queries, data visualization, and reporting techniques (Paperback)
Harish Gulati
R1,223 Discovery Miles 12 230 Ships in 18 - 22 working days

Leverage the full potential of SAS to get unique, actionable insights from your data Key Features Build enterprise-class data solutions using SAS and become well-versed in SAS programming Work with different data structures, and run SQL queries to manipulate your data Explore essential concepts and techniques with practical examples to confidently pass the SAS certification exam Book DescriptionSAS is one of the leading enterprise tools in the world today when it comes to data management and analysis. It enables the fast and easy processing of data and helps you gain valuable business insights for effective decision-making. This book will serve as a comprehensive guide that will prepare you for the SAS certification exam. After a quick overview of the SAS architecture and components, the book will take you through the different approaches to importing and reading data from different sources using SAS. You will then cover SAS Base and 4GL, understanding data management and analysis, along with exploring SAS functions for data manipulation and transformation. Next, you'll discover SQL procedures and get up to speed on creating and validating queries. In the concluding chapters, you'll learn all about data visualization, right from creating bar charts and sample geographic maps through to assigning patterns and formats. In addition to this, the book will focus on macro programming and its advanced aspects. By the end of this book, you will be well versed in SAS programming and have the skills you need to easily handle and manage your data-related problems in SAS. What you will learn Explore a variety of SAS modules and packages for efficient data analysis Use SAS 4GL functions to manipulate, merge, sort, and transform data Gain useful insights into advanced PROC SQL options in SAS to interact with data Get to grips with SAS Macro and define your own macros to share data Discover the different graphical libraries to shape and visualize data with Apply the SAS Output Delivery System to prepare detailed reports Who this book is forBudding or experienced data professionals who want to get started with SAS will benefit from this book. Those looking to prepare for the SAS certification exam will also find this book to be a useful resource. Some understanding of basic data management concepts will help you get the most out of this book.

Research Data Visualization and Scientific Graphics - for Papers, Presentations and Proposals (Paperback): Martins Zaumanis Research Data Visualization and Scientific Graphics - for Papers, Presentations and Proposals (Paperback)
Martins Zaumanis
R327 Discovery Miles 3 270 Ships in 18 - 22 working days
Advanced Natural Language Processing with TensorFlow 2 - Build effective real-world NLP applications using NER, RNNs, seq2seq... Advanced Natural Language Processing with TensorFlow 2 - Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more (Paperback)
Ashish Bansal
R1,094 Discovery Miles 10 940 Ships in 18 - 22 working days

One-stop solution for NLP practitioners, ML developers, and data scientists to build effective NLP systems that can perform real-world complicated tasks Key Features Apply deep learning algorithms and techniques such as BiLSTMS, CRFs, BPE and more using TensorFlow 2 Explore applications like text generation, summarization, weakly supervised labelling and more Read cutting edge material with seminal papers provided in the GitHub repository with full working code Book DescriptionRecently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications. This book comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques. The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs. The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2. Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece. By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems. What you will learn Grasp important pre-steps in building NLP applications like POS tagging Use transfer and weakly supervised learning using libraries like Snorkel Do sentiment analysis using BERT Apply encoder-decoder NN architectures and beam search for summarizing texts Use Transformer models with attention to bring images and text together Build apps that generate captions and answer questions about images using custom Transformers Use advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest DeepNLP models Who this book is forThis is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra. The readers who can benefit the most from this book include intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques and professionals who already use TensorFlow/Python for purposes such as data science, ML, research, analysis, etc.

Data Analytics Made Easy - Analyze and present data to make informed decisions without writing any code (Paperback): Andrea De... Data Analytics Made Easy - Analyze and present data to make informed decisions without writing any code (Paperback)
Andrea De Mauro; Foreword by Francesco Marzoni, Andrew J. Walter
R880 Discovery Miles 8 800 Ships in 18 - 22 working days

Learn how to gain insights from your data as well as machine learning and become a presentation pro who can create interactive dashboards Key Features Enhance your presentation skills by implementing engaging data storytelling and visualization techniques Learn the basics of machine learning and easily apply machine learning models to your data Improve productivity by automating your data processes Book DescriptionData Analytics Made Easy is an accessible beginner's guide for anyone working with data. The book interweaves four key elements: Data visualizations and storytelling - Tired of people not listening to you and ignoring your results? Don't worry; chapters 7 and 8 show you how to enhance your presentations and engage with your managers and co-workers. Learn to create focused content with a well-structured story behind it to captivate your audience. Automating your data workflows - Improve your productivity by automating your data analysis. This book introduces you to the open-source platform, KNIME Analytics Platform. You'll see how to use this no-code and free-to-use software to create a KNIME workflow of your data processes just by clicking and dragging components. Machine learning - Data Analytics Made Easy describes popular machine learning approaches in a simplified and visual way before implementing these machine learning models using KNIME. You'll not only be able to understand data scientists' machine learning models; you'll be able to challenge them and build your own. Creating interactive dashboards - Follow the book's simple methodology to create professional-looking dashboards using Microsoft Power BI, giving users the capability to slice and dice data and drill down into the results. What you will learn Understand the potential of data and its impact on your business Import, clean, transform, combine data feeds, and automate your processes Influence business decisions by learning to create engaging presentations Build real-world models to improve profitability, create customer segmentation, automate and improve data reporting, and more Create professional-looking and business-centric visuals and dashboards Open the lid on the black box of AI and learn about and implement supervised and unsupervised machine learning models Who this book is forThis book is for beginners who work with data and those who need to know how to interpret their business/customer data. The book also covers the high-level concepts of data workflows, machine learning, data storytelling, and visualizations, which are useful for managers. No previous math, statistics, or computer science knowledge is required.

Azure Databricks Cookbook - Accelerate and scale real-time analytics solutions using the Apache Spark-based analytics service... Azure Databricks Cookbook - Accelerate and scale real-time analytics solutions using the Apache Spark-based analytics service (Paperback)
Phani Raj, Vinod Jaiswal
R1,335 Discovery Miles 13 350 Ships in 18 - 22 working days

Get to grips with building and productionizing end-to-end big data solutions in Azure and learn best practices for working with large datasets Key Features Integrate with Azure Synapse Analytics, Cosmos DB, and Azure HDInsight Kafka Cluster to scale and analyze your projects and build pipelines Use Databricks SQL to run ad hoc queries on your data lake and create dashboards Productionize a solution using CI/CD for deploying notebooks and Azure Databricks Service to various environments Book DescriptionAzure Databricks is a unified collaborative platform for performing scalable analytics in an interactive environment. The Azure Databricks Cookbook provides recipes to get hands-on with the analytics process, including ingesting data from various batch and streaming sources and building a modern data warehouse. The book starts by teaching you how to create an Azure Databricks instance within the Azure portal, Azure CLI, and ARM templates. You'll work through clusters in Databricks and explore recipes for ingesting data from sources, including files, databases, and streaming sources such as Apache Kafka and EventHub. The book will help you explore all the features supported by Azure Databricks for building powerful end-to-end data pipelines. You'll also find out how to build a modern data warehouse by using Delta tables and Azure Synapse Analytics. Later, you'll learn how to write ad hoc queries and extract meaningful insights from the data lake by creating visualizations and dashboards with Databricks SQL. Finally, you'll deploy and productionize a data pipeline as well as deploy notebooks and Azure Databricks service using continuous integration and continuous delivery (CI/CD). By the end of this Azure book, you'll be able to use Azure Databricks to streamline different processes involved in building data-driven apps. What you will learn Read and write data from and to various Azure resources and file formats Build a modern data warehouse with Delta Tables and Azure Synapse Analytics Explore jobs, stages, and tasks and see how Spark lazy evaluation works Handle concurrent transactions and learn performance optimization in Delta tables Learn Databricks SQL and create real-time dashboards in Databricks SQL Integrate Azure DevOps for version control, deploying, and productionizing solutions with CI/CD pipelines Discover how to use RBAC and ACLs to restrict data access Build end-to-end data processing pipeline for near real-time data analytics Who this book is forThis recipe-based book is for data scientists, data engineers, big data professionals, and machine learning engineers who want to perform data analytics on their applications. Prior experience of working with Apache Spark and Azure is necessary to get the most out of this book.

Hands-On Deep Learning with R - A practical guide to designing, building, and improving neural network models using R... Hands-On Deep Learning with R - A practical guide to designing, building, and improving neural network models using R (Paperback)
Michael Pawlus, Rodger Devine
R1,075 Discovery Miles 10 750 Ships in 18 - 22 working days

Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and Deepnet Key Features Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem Improve models using parameter tuning, feature engineering, and ensembling Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains Book DescriptionDeep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming. This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You'll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you'll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems. By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms. What you will learn Design a feedforward neural network to see how the activation function computes an output Create an image recognition model using convolutional neural networks (CNNs) Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm Apply text cleaning techniques to remove uninformative text using NLP Build, train, and evaluate a GAN model for face generation Understand the concept and implementation of reinforcement learning in R Who this book is forThis book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

Getting Started with Google BERT - Build and train state-of-the-art natural language processing models using BERT (Paperback):... Getting Started with Google BERT - Build and train state-of-the-art natural language processing models using BERT (Paperback)
Sudharsan Ravichandiran
R1,083 Discovery Miles 10 830 Ships in 18 - 22 working days

Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key Features Explore the encoder and decoder of the transformer model Become well-versed with BERT along with ALBERT, RoBERTa, and DistilBERT Discover how to pre-train and fine-tune BERT models for several NLP tasks Book DescriptionBERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer's encoder and decoder work. You'll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you'll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you'll be well-versed with using BERT and its variants for performing practical NLP tasks. What you will learn Understand the transformer model from the ground up Find out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasks Get hands-on with BERT by learning to generate contextual word and sentence embeddings Fine-tune BERT for downstream tasks Get to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT models Get the hang of the BERT models based on knowledge distillation Understand cross-lingual models such as XLM and XLM-R Explore Sentence-BERT, VideoBERT, and BART Who this book is forThis book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.

Handbook of Big Data Analytics, Volume 2 - Applications in ICT, security and business analytics (Hardcover): Vadlamani Ravi,... Handbook of Big Data Analytics, Volume 2 - Applications in ICT, security and business analytics (Hardcover)
Vadlamani Ravi, Aswani Kumar Cherukuri
R3,434 R3,099 Discovery Miles 30 990 Save R335 (10%) Ships in 18 - 22 working days

Big Data analytics is the complex process of examining big data to uncover information such as correlations, hidden patterns, trends and user and customer preferences, to allow organizations and businesses to make more informed decisions. These methods and technologies have become ubiquitous in all fields of science, engineering, business and management due to the rise of data-driven models as well as data engineering developments using parallel and distributed computational analytics frameworks, data and algorithm parallelization, and GPGPU programming. However, there remain potential issues that need to be addressed to enable big data processing and analytics in real time. In the first volume of this comprehensive two-volume handbook, the authors present several methodologies to support Big Data analytics including database management, processing frameworks and architectures, data lakes, query optimization strategies, towards real-time data processing, data stream analytics, Fog and Edge computing, and Artificial Intelligence and Big Data. The second volume is dedicated to a wide range of applications in secure data storage, privacy-preserving, Software Defined Networks (SDN), Internet of Things (IoTs), behaviour analytics, traffic predictions, gender based classification on e-commerce data, recommender systems, Big Data regression with Apache Spark, visual sentiment analysis, wavelet Neural Network via GPU, stock market movement predictions, and financial reporting. The two-volume work is aimed at providing a unique platform for researchers, engineers, developers, educators and advanced students in the field of Big Data analytics.

Handbook of Big Data Analytics, Volume 1 - Methodologies (Hardcover): Vadlamani Ravi, Aswani Kumar Cherukuri Handbook of Big Data Analytics, Volume 1 - Methodologies (Hardcover)
Vadlamani Ravi, Aswani Kumar Cherukuri
R3,428 R3,093 Discovery Miles 30 930 Save R335 (10%) Ships in 18 - 22 working days

Big Data analytics is the complex process of examining big data to uncover information such as correlations, hidden patterns, trends and user and customer preferences, to allow organizations and businesses to make more informed decisions. These methods and technologies have become ubiquitous in all fields of science, engineering, business and management due to the rise of data-driven models as well as data engineering developments using parallel and distributed computational analytics frameworks, data and algorithm parallelization, and GPGPU programming. However, there remain potential issues that need to be addressed to enable big data processing and analytics in real time. In the first volume of this comprehensive two-volume handbook, the authors present several methodologies to support Big Data analytics including database management, processing frameworks and architectures, data lakes, query optimization strategies, towards real-time data processing, data stream analytics, Fog and Edge computing, and Artificial Intelligence and Big Data. The second volume is dedicated to a wide range of applications in secure data storage, privacy-preserving, Software Defined Networks (SDN), Internet of Things (IoTs), behaviour analytics, traffic predictions, gender based classification on e-commerce data, recommender systems, Big Data regression with Apache Spark, visual sentiment analysis, wavelet Neural Network via GPU, stock market movement predictions, and financial reporting. The two-volume work is aimed at providing a unique platform for researchers, engineers, developers, educators and advanced students in the field of Big Data analytics.

Automated Machine Learning - Hyperparameter optimization, neural architecture search, and algorithm selection with cloud... Automated Machine Learning - Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms (Paperback)
Adnan Masood; Foreword by Ahmed Sherif
R1,102 Discovery Miles 11 020 Ships in 18 - 22 working days

Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key Features Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice Eliminate mundane tasks in data engineering and reduce human errors in machine learning models Find out how you can make machine learning accessible for all users to promote decentralized processes Book DescriptionEvery machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you'll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you'll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learn Explore AutoML fundamentals, underlying methods, and techniques Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario Find out the difference between cloud and operations support systems (OSS) Implement AutoML in enterprise cloud to deploy ML models and pipelines Build explainable AutoML pipelines with transparency Understand automated feature engineering and time series forecasting Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems Who this book is forCitizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.

Exploring and Visualizing US Census Data with R - Using tidycensus and tidyverse to import, manipulate, explore, and visualize... Exploring and Visualizing US Census Data with R - Using tidycensus and tidyverse to import, manipulate, explore, and visualize census data (Paperback)
Eric Pimpler
R878 Discovery Miles 8 780 Ships in 18 - 22 working days
Limitless Analytics with Azure Synapse - An end-to-end analytics service for data processing, management, and ingestion for BI... Limitless Analytics with Azure Synapse - An end-to-end analytics service for data processing, management, and ingestion for BI and ML requirements (Paperback)
Prashant Kumar Mishra, Mukesh Kumar
R1,223 Discovery Miles 12 230 Ships in 18 - 22 working days

Leverage the Azure analytics platform's key analytics services to deliver unmatched intelligence for your data Key Features Learn to ingest, prepare, manage, and serve data for immediate business requirements Bring enterprise data warehousing and big data analytics together to gain insights from your data Develop end-to-end analytics solutions using Azure Synapse Book DescriptionAzure Synapse Analytics, which Microsoft describes as the next evolution of Azure SQL Data Warehouse, is a limitless analytics service that brings enterprise data warehousing and big data analytics together. With this book, you'll learn how to discover insights from your data effectively using this platform. The book starts with an overview of Azure Synapse Analytics, its architecture, and how it can be used to improve business intelligence and machine learning capabilities. Next, you'll go on to choose and set up the correct environment for your business problem. You'll also learn a variety of ways to ingest data from various sources and orchestrate the data using transformation techniques offered by Azure Synapse. Later, you'll explore how to handle both relational and non-relational data using the SQL language. As you progress, you'll perform real-time streaming and execute data analysis operations on your data using various languages, before going on to apply ML techniques to derive accurate and granular insights from data. Finally, you'll discover how to protect sensitive data in real time by using security and privacy features. By the end of this Azure book, you'll be able to build end-to-end analytics solutions while focusing on data prep, data management, data warehousing, and AI tasks. What you will learn Explore the necessary considerations for data ingestion and orchestration while building analytical pipelines Understand pipelines and activities in Synapse pipelines and use them to construct end-to-end data-driven workflows Query data using various coding languages on Azure Synapse Focus on Synapse SQL and Synapse Spark Manage and monitor resource utilization and query activity in Azure Synapse Connect Power BI workspaces with Azure Synapse and create or modify reports directly from Synapse Studio Create and manage IP firewall rules in Azure Synapse Who this book is forThis book is for data architects, data scientists, data engineers, and business analysts who are looking to get up and running with the Azure Synapse Analytics platform. Basic knowledge of data warehousing will be beneficial to help you understand the concepts covered in this book more effectively.

Data Science and Machine Learning Interview Questions Using R - Crack the Data Scientist and Machine Learning Engineers... Data Science and Machine Learning Interview Questions Using R - Crack the Data Scientist and Machine Learning Engineers Interviews with Ease (English Edition) (Paperback)
Vishwanathan Narayanan
R491 Discovery Miles 4 910 Ships in 18 - 22 working days
Cleaning Data for Effective Data Science - Doing the other 80% of the work with Python, R, and command-line tools (Paperback):... Cleaning Data for Effective Data Science - Doing the other 80% of the work with Python, R, and command-line tools (Paperback)
David Mertz
R1,132 Discovery Miles 11 320 Ships in 18 - 22 working days

Think about your data intelligently and ask the right questions Key Features Master data cleaning techniques necessary to perform real-world data science and machine learning tasks Spot common problems with dirty data and develop flexible solutions from first principles Test and refine your newly acquired skills through detailed exercises at the end of each chapter Book DescriptionData cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the hard way. In a light-hearted and engaging exploration of different tools, techniques, and datasets real and fictitious, Python veteran David Mertz teaches you the ins and outs of data preparation and the essential questions you should be asking of every piece of data you work with. Using a mixture of Python, R, and common command-line tools, Cleaning Data for Effective Data Science follows the data cleaning pipeline from start to end, focusing on helping you understand the principles underlying each step of the process. You'll look at data ingestion of a vast range of tabular, hierarchical, and other data formats, impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features. The long-form exercises at the end of each chapter let you get hands-on with the skills you've acquired along the way, also providing a valuable resource for academic courses. What you will learn Ingest and work with common data formats like JSON, CSV, SQL and NoSQL databases, PDF, and binary serialized data structures Understand how and why we use tools such as pandas, SciPy, scikit-learn, Tidyverse, and Bash Apply useful rules and heuristics for assessing data quality and detecting bias, like Benford's law and the 68-95-99.7 rule Identify and handle unreliable data and outliers, examining z-score and other statistical properties Impute sensible values into missing data and use sampling to fix imbalances Use dimensionality reduction, quantization, one-hot encoding, and other feature engineering techniques to draw out patterns in your data Work carefully with time series data, performing de-trending and interpolation Who this book is forThis book is designed to benefit software developers, data scientists, aspiring data scientists, teachers, and students who work with data. If you want to improve your rigor in data hygiene or are looking for a refresher, this book is for you. Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful.

Excel 2021 (Paperback): Jiayi Simonds Excel 2021 (Paperback)
Jiayi Simonds
R438 Discovery Miles 4 380 Ships in 18 - 22 working days
Essential Statistics for Non-STEM Data Analysts - Get to grips with the statistics and math knowledge needed to enter the world... Essential Statistics for Non-STEM Data Analysts - Get to grips with the statistics and math knowledge needed to enter the world of data science with Python (Paperback)
Rongpeng Li
R1,100 Discovery Miles 11 000 Ships in 18 - 22 working days

Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python programming Key Features Work your way through the entire data analysis pipeline with statistics concerns in mind to make reasonable decisions Understand how various data science algorithms function Build a solid foundation in statistics for data science and machine learning using Python-based examples Book DescriptionStatistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks. The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You'll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you'll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you've uncovered the working mechanism of data science algorithms, you'll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you'll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning. By the end of this Essential Statistics for Non-STEM Data Analysts book, you'll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals. What you will learn Find out how to grab and load data into an analysis environment Perform descriptive analysis to extract meaningful summaries from data Discover probability, parameter estimation, hypothesis tests, and experiment design best practices Get to grips with resampling and bootstrapping in Python Delve into statistical tests with variance analysis, time series analysis, and A/B test examples Understand the statistics behind popular machine learning algorithms Answer questions on statistics for data scientist interviews Who this book is forThis book is an entry-level guide for data science enthusiasts, data analysts, and anyone starting out in the field of data science and looking to learn the essential statistical concepts with the help of simple explanations and examples. If you're a developer or student with a non-mathematical background, you'll find this book useful. Working knowledge of the Python programming language is required.

Microsoft Power BI Demystified - step by step guide on how to create interactive dashboard and reports using Power BI... Microsoft Power BI Demystified - step by step guide on how to create interactive dashboard and reports using Power BI (Paperback)
Elijah Falode
R742 Discovery Miles 7 420 Ships in 18 - 22 working days
Hands-On Data Analysis with Pandas - A Python data science handbook for data collection, wrangling, analysis, and... Hands-On Data Analysis with Pandas - A Python data science handbook for data collection, wrangling, analysis, and visualization, 2nd Edition (Paperback, 2nd Revised edition)
Stefanie Molin; Foreword by Ken Jee
R1,646 Discovery Miles 16 460 Ships in 18 - 22 working days

Get to grips with pandas by working with real datasets and master data discovery, data manipulation, data preparation, and handling data for analytical tasks Key Features Perform efficient data analysis and manipulation tasks using pandas 1.x Apply pandas to different real-world domains with the help of step-by-step examples Make the most of pandas as an effective data exploration tool Book DescriptionExtracting valuable business insights is no longer a 'nice-to-have', but an essential skill for anyone who handles data in their enterprise. Hands-On Data Analysis with Pandas is here to help beginners and those who are migrating their skills into data science get up to speed in no time. This book will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making - valuable knowledge that can be applied across multiple domains. What you will learn Understand how data analysts and scientists gather and analyze data Perform data analysis and data wrangling using Python Combine, group, and aggregate data from multiple sources Create data visualizations with pandas, matplotlib, and seaborn Apply machine learning algorithms to identify patterns and make predictions Use Python data science libraries to analyze real-world datasets Solve common data representation and analysis problems using pandas Build Python scripts, modules, and packages for reusable analysis code Who this book is forThis book is for data science beginners, data analysts, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. Data scientists looking to implement pandas in their machine learning workflow will also find plenty of valuable know-how as they progress. You'll find it easier to follow along with this book if you have a working knowledge of the Python programming language, but a Python crash-course tutorial is provided in the code bundle for anyone who needs a refresher.

Der Neutrodyne-Empfanger (German, Paperback, 1925 ed.): Rosa Horsky Der Neutrodyne-Empfanger (German, Paperback, 1925 ed.)
Rosa Horsky
R1,454 Discovery Miles 14 540 Ships in 18 - 22 working days

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfangen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen fur die historische wie auch die disziplingeschichtliche Forschung zur Verfugung, die jeweils im historischen Kontext betrachtet werden mussen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Blockchain Development for Finance Projects - Building next-generation financial applications using Ethereum, Hyperledger... Blockchain Development for Finance Projects - Building next-generation financial applications using Ethereum, Hyperledger Fabric, and Stellar (Paperback)
Ishan Roy
R1,102 Discovery Miles 11 020 Ships in 18 - 22 working days

A practical blockchain handbook designed to take you through implementing and re-engineering banking and financial solutions and workflows using eight step-by-step projects Key Features Implement various end-to-end blockchain projects and learn to enhance present-day financial solutions Use Ethereum, Hyperledger, and Stellar to build public and private decentralized applications Address complex challenges faced in the BFSI domain using different blockchain platform services Book DescriptionBlockchain technology will continue to play an integral role in the banking and finance sector in the coming years. It will enable enterprises to build transparent and secure business processes. Experts estimate annual savings of up to 20 billion dollars from this technology. This book will help you build financial apps using blockchain, guiding you through enhancing popular products and services in the banking and finance sector. The book starts by explaining the essential concepts of blockchain, and the impact of blockchain technology on the BFSI sector. Next, you'll delve into re-designing existing banking processes and building new financial apps using blockchain. To accomplish this, you'll work through eight blockchain projects. By demonstrating the entire process, the book helps you understand everything from setting up the environment and building frontend portals to system integration and testing apps. You will gain hands-on experience with the Ethereum, Hyperledger Fabric, and Stellar to develop private and public decentralized apps. Finally, you'll learn how to use ancillary platforms and frameworks such as IPFS, Truffle OpenZeppelin, and MetaMask. By the end of this blockchain book, you'll have an in-depth understanding of how to leverage distributed ledgers and smart contracts for financial use cases. What you will learn Design and implement blockchain solutions in a BFSI organization Explore common architectures and implementation models for enterprise blockchain Design blockchain wallets for multi-purpose applications using Ethereum Build secure and fast decentralized trading ecosystems with Blockchain Implement smart contracts to build secure process workflows in Ethereum and Hyperledger Fabric Use the Stellar platform to build KYC and AML-compliant remittance workflows Map complex business workflows and automate backend processes in a blockchain architecture Who this book is forThis book is for blockchain and Dapps developers, or anyone looking for a guide to building innovative and highly secure solutions in the fintech domain using real-world use cases. Developers working in financial enterprises and banks, and solution architects looking to build brand new process flows using blockchain technology will also find the book useful. Experience with Solidity programming and prior knowledge of finance and trade are required to get the most out of this book.

Hands-On Mulesoft Anypoint Platform Mulesoft Anypoint Studio Payload, Components, Flow Controls, Scopes and Error Handling... Hands-On Mulesoft Anypoint Platform Mulesoft Anypoint Studio Payload, Components, Flow Controls, Scopes and Error Handling (Paperback)
Nanda Nachimuthu
R477 Discovery Miles 4 770 Ships in 18 - 22 working days
Tableau Desktop Certified Associate: Exam Guide - Develop your Tableau skills and prepare for Tableau certification with tips... Tableau Desktop Certified Associate: Exam Guide - Develop your Tableau skills and prepare for Tableau certification with tips from industry experts (Paperback)
Dmitry Anoshin, JC Gillet, Fabian Peri, Radhika Biyani, Gleb Makarenko
R1,002 Discovery Miles 10 020 Ships in 18 - 22 working days

Learn through hands-on exercises covering a variety of topics including data connections, analytics, and dashboards to effectively prepare for the Tableau Desktop Certified Associate exam Key Features Prepare for the Tableau Desktop Certified Associate exam with the help of tips and techniques shared by experts Implement Tableau's advanced analytical capabilities such as forecasting Delve into advanced Tableau features and explore best practices for building dashboards Book DescriptionThe Tableau Desktop Certified Associate exam measures your knowledge of Tableau Desktop and your ability to work with data and data visualization techniques. This book will help you to become well-versed in Tableau software and use its business intelligence (BI) features to solve BI and analytics challenges. With the help of this book, you'll explore the authors' success stories and their experience with Tableau. You'll start by understanding the importance of Tableau certification and the different certification exams, along with covering the exam format, Tableau basics, and best practices for preparing data for analysis and visualization. The book builds on your knowledge of advanced Tableau topics such as table calculations for solving problems. You'll learn to effectively visualize geographic data using vector maps. Later, you'll discover the analytics capabilities of Tableau by learning how to use features such as forecasting. Finally, you'll understand how to build and customize dashboards, while ensuring they convey information effectively. Every chapter has examples and tests to reinforce your learning, along with mock tests in the last section. By the end of this book, you'll be able to efficiently prepare for the certification exam with the help of mock tests, detailed explanations, and expert advice from the authors. What you will learn Apply Tableau best practices to analyze and visualize data Use Tableau to visualize geographic data using vector maps Create charts to gain productive insights into data and make quality-driven decisions Implement advanced analytics techniques to identify and forecast key values Prepare customized table calculations to compute specific values Answer questions based on the Tableau Desktop Certified Associate exam with the help of mock tests Who this book is forThis Tableau certification book is for business analysts, BI professionals, and data analysts who want to become certified Tableau Desktop Associates and solve a range of data science and business intelligence problems using this example-packed guide. Some experience in Tableau Desktop is expected to get the most out of this book.

Learning Elastic Stack 7.0 - Distributed search, analytics, and visualization using Elasticsearch, Logstash, Beats, and Kibana,... Learning Elastic Stack 7.0 - Distributed search, analytics, and visualization using Elasticsearch, Logstash, Beats, and Kibana, 2nd Edition (Paperback, 2nd Revised edition)
Pranav Shukla, Sharath Kumar M N
R1,025 Discovery Miles 10 250 Ships in 18 - 22 working days

A beginner's guide to storing, managing, and analyzing data with the updated features of Elastic 7.0 Key Features Gain access to new features and updates introduced in Elastic Stack 7.0 Grasp the fundamentals of Elastic Stack including Elasticsearch, Logstash, and Kibana Explore useful tips for using Elastic Cloud and deploying Elastic Stack in production environments Book DescriptionThe Elastic Stack is a powerful combination of tools for techniques such as distributed search, analytics, logging, and visualization of data. Elastic Stack 7.0 encompasses new features and capabilities that will enable you to find unique insights into analytics using these techniques. This book will give you a fundamental understanding of what the stack is all about, and help you use it efficiently to build powerful real-time data processing applications. The first few sections of the book will help you understand how to set up the stack by installing tools, and exploring their basic configurations. You'll then get up to speed with using Elasticsearch for distributed searching and analytics, Logstash for logging, and Kibana for data visualization. As you work through the book, you will discover the technique of creating custom plugins using Kibana and Beats. This is followed by coverage of the Elastic X-Pack, a useful extension for effective security and monitoring. You'll also find helpful tips on how to use Elastic Cloud and deploy Elastic Stack in production environments. By the end of this book, you'll be well versed with the fundamental Elastic Stack functionalities and the role of each component in the stack to solve different data processing problems. What you will learn Install and configure an Elasticsearch architecture Solve the full-text search problem with Elasticsearch Discover powerful analytics capabilities through aggregations using Elasticsearch Build a data pipeline to transfer data from a variety of sources into Elasticsearch for analysis Create interactive dashboards for effective storytelling with your data using Kibana Learn how to secure, monitor and use Elastic Stack's alerting and reporting capabilities Take applications to an on-premise or cloud-based production environment with Elastic Stack Who this book is forThis book is for entry-level data professionals, software engineers, e-commerce developers, and full-stack developers who want to learn about Elastic Stack and how the real-time processing and search engine works for business analytics and enterprise search applications. Previous experience with Elastic Stack is not required, however knowledge of data warehousing and database concepts will be helpful.

Hands-On Data Analysis with Scala - Perform data collection, processing, manipulation, and visualization with Scala... Hands-On Data Analysis with Scala - Perform data collection, processing, manipulation, and visualization with Scala (Paperback)
Rajesh Gupta
R1,102 Discovery Miles 11 020 Ships in 18 - 22 working days

Master scala's advanced techniques to solve real-world problems in data analysis and gain valuable insights from your data Key Features A beginner's guide for performing data analysis loaded with numerous rich, practical examples Access to popular Scala libraries such as Breeze, Saddle for efficient data manipulation and exploratory analysis Develop applications in Scala for real-time analysis and machine learning in Apache Spark Book DescriptionEfficient business decisions with an accurate sense of business data helps in delivering better performance across products and services. This book helps you to leverage the popular Scala libraries and tools for performing core data analysis tasks with ease. The book begins with a quick overview of the building blocks of a standard data analysis process. You will learn to perform basic tasks like Extraction, Staging, Validation, Cleaning, and Shaping of datasets. You will later deep dive into the data exploration and visualization areas of the data analysis life cycle. You will make use of popular Scala libraries like Saddle, Breeze, Vegas, and PredictionIO for processing your datasets. You will learn statistical methods for deriving meaningful insights from data. You will also learn to create applications for Apache Spark 2.x on complex data analysis, in real-time. You will discover traditional machine learning techniques for doing data analysis. Furthermore, you will also be introduced to neural networks and deep learning from a data analysis standpoint. By the end of this book, you will be capable of handling large sets of structured and unstructured data, perform exploratory analysis, and building efficient Scala applications for discovering and delivering insights What you will learn Techniques to determine the validity and confidence level of data Apply quartiles and n-tiles to datasets to see how data is distributed into many buckets Create data pipelines that combine multiple data lifecycle steps Use built-in features to gain a deeper understanding of the data Apply Lasso regression analysis method to your data Compare Apache Spark API with traditional Apache Spark data analysis Who this book is forIf you are a data scientist or a data analyst who wants to learn how to perform data analysis using Scala, this book is for you. All you need is knowledge of the basic fundamentals of Scala programming.

Mastering Ethereum - Implement advanced blockchain applications using Ethereum-supported tools, services, and protocols... Mastering Ethereum - Implement advanced blockchain applications using Ethereum-supported tools, services, and protocols (Paperback)
Merunas Grincalaitis
R901 Discovery Miles 9 010 Ships in 18 - 22 working days

An expert guide to implementing fast, secure, and scalable decentralized applications that work with thousands of users in real time Key Features Implement advanced features of the Ethereum network to build powerful decentralized applications Build smart contracts on different domains using the programming techniques of Solidity and Vyper Explore the architecture of Ethereum network to understand advanced use cases of blockchain development Book DescriptionEthereum is one of the commonly used platforms for building blockchain applications. It's a decentralized platform for applications that can run exactly as programmed without being affected by fraud, censorship, or third-party interference. This book will give you a deep understanding of how blockchain works so that you can discover the entire ecosystem, core components, and its implementations. You will get started by understanding how to configure and work with various Ethereum protocols for developing dApps. Next, you will learn to code and create powerful smart contracts that scale with Solidity and Vyper. You will then explore the building blocks of the dApps architecture, and gain insights on how to create your own dApp through a variety of real-world examples. The book will even guide you on how to deploy your dApps on multiple Ethereum instances with the required best practices and techniques. The next few chapters will delve into advanced topics such as, building advanced smart contracts and multi-page frontends using Ethereum blockchain. You will also focus on implementing machine learning techniques to build decentralized autonomous applications, in addition to covering several use cases across a variety of domains such as, social media and e-commerce. By the end of this book, you will have the expertise you need to build decentralized autonomous applications confidently. What you will learn Apply scalability solutions on dApps with Plasma and state channels Understand the important metrics of blockchain for analyzing and determining its state Develop a decentralized web application using React.js and Node.js Create oracles with Node.js to provide external data to smart contracts Get to grips with using Etherscan and block explorers for various transactions Explore web3.js, Solidity, and Vyper for dApps communication Deploy apps with multiple Ethereum instances including TestRPC, private chain, test chain, and mainnet Who this book is forThis book is for anyone who wants to build fast, highly secure, and transactional decentralized applications. If you are an Ethereum developer looking to perfect your existing skills in building powerful blockchain applications, then this book is for you. Basic knowledge of Ethereum and blockchain is necessary to understand the concepts covered in this book.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Gaming Addiction - Online Addiction…
Ace McCloud Hardcover R499 R466 Discovery Miles 4 660
Pervasive and Ubiquitous Technology…
Kevin Curran Hardcover R4,926 Discovery Miles 49 260
Conversations with Things - UX Design…
Diana Deibel, Rebecca Evanhoe Paperback R1,072 Discovery Miles 10 720
The User Experience Team of One
Leah Buley Paperback R741 Discovery Miles 7 410
Blogging - Unlock the Secrets to Making…
Matthew Shields Hardcover R481 R450 Discovery Miles 4 500
Better Late Than Never - Andy Green…
Andy Green Hardcover R1,064 Discovery Miles 10 640
The Complete Website Planning Guide…
Darryl King Hardcover R914 Discovery Miles 9 140
Digital Multimedia - Concepts…
Information Reso Management Association Hardcover R8,478 Discovery Miles 84 780
Blueprints to Building Your Own…
Ian J M King Hardcover R574 R524 Discovery Miles 5 240
Student Usability in Educational…
Carina Gonzalez Hardcover R4,499 Discovery Miles 44 990

 

Partners