0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (78)
  • R500+ (1,199)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Databases > Data capture & analysis

PySpark Cookbook - Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python... PySpark Cookbook - Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python (Paperback)
Denny Lee, Tomasz Drabas
R1,082 Discovery Miles 10 820 Ships in 18 - 22 working days

Combine the power of Apache Spark and Python to build effective big data applications Key Features Perform effective data processing, machine learning, and analytics using PySpark Overcome challenges in developing and deploying Spark solutions using Python Explore recipes for efficiently combining Python and Apache Spark to process data Book DescriptionApache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem. You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications. What you will learn Configure a local instance of PySpark in a virtual environment Install and configure Jupyter in local and multi-node environments Create DataFrames from JSON and a dictionary using pyspark.sql Explore regression and clustering models available in the ML module Use DataFrames to transform data used for modeling Connect to PubNub and perform aggregations on streams Who this book is forThe PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.

Hands-On Data Visualization with Bokeh - Interactive web plotting for Python using Bokeh (Paperback): Kevin Jolly Hands-On Data Visualization with Bokeh - Interactive web plotting for Python using Bokeh (Paperback)
Kevin Jolly
R809 Discovery Miles 8 090 Ships in 18 - 22 working days

Learn how to create interactive and visually aesthetic plots using the Bokeh package in Python Key Features A step by step approach to creating interactive plots with Bokeh Go from installation all the way to deploying your very own Bokeh application Work with a real time datasets to practice and create your very own plots and applications Book DescriptionAdding a layer of interactivity to your plots and converting these plots into applications hold immense value in the field of data science. The standard approach to adding interactivity would be to use paid software such as Tableau, but the Bokeh package in Python offers users a way to create both interactive and visually aesthetic plots for free. This book gets you up to speed with Bokeh - a popular Python library for interactive data visualization. The book starts out by helping you understand how Bokeh works internally and how you can set up and install the package in your local machine. You then use a real world data set which uses stock data from Kaggle to create interactive and visually stunning plots. You will also learn how to leverage Bokeh using some advanced concepts such as plotting with spatial and geo data. Finally you will use all the concepts that you have learned in the previous chapters to create your very own Bokeh application from scratch. By the end of the book you will be able to create your very own Bokeh application. You will have gone through a step by step process that starts with understanding what Bokeh actually is and ends with building your very own Bokeh application filled with interactive and visually aesthetic plots. What you will learn Installing Bokeh and understanding its key concepts Creating plots using glyphs, the fundamental building blocks of Bokeh Creating plots using different data structures like NumPy and Pandas Using layouts and widgets to visually enhance your plots and add a layer of interactivity Building and hosting applications on the Bokeh server Creating advanced plots using spatial data Who this book is forThis book is well suited for data scientists and data analysts who want to perform interactive data visualization on their web browsers using Bokeh. Some exposure to Python programming will be helpful, but prior experience with Bokeh is not required.

Implementing Splunk 7, Third Edition - Effective operational intelligence to transform machine-generated data into valuable... Implementing Splunk 7, Third Edition - Effective operational intelligence to transform machine-generated data into valuable business insight, 3rd Edition (Paperback, 3rd Revised edition)
James Miller
R1,223 Discovery Miles 12 230 Ships in 18 - 22 working days

A comprehensive guide to making machine data accessible across the organization using advanced dashboards Key Features Enrich machine-generated data and transform it into useful, meaningful insights Perform search operations and configurations, build dashboards, and manage logs Extend Splunk services with scripts and advanced configurations to process optimal results Book DescriptionSplunk is the leading platform that fosters an efficient methodology and delivers ways to search, monitor, and analyze growing amounts of big data. This book will allow you to implement new services and utilize them to quickly and efficiently process machine-generated big data. We introduce you to all the new features, improvements, and offerings of Splunk 7. We cover the new modules of Splunk: Splunk Cloud and the Machine Learning Toolkit to ease data usage. Furthermore, you will learn to use search terms effectively with Boolean and grouping operators. You will learn not only how to modify your search to make your searches fast but also how to use wildcards efficiently. Later you will learn how to use stats to aggregate values, a chart to turn data, and a time chart to show values over time; you'll also work with fields and chart enhancements and learn how to create a data model with faster data model acceleration. Once this is done, you will learn about XML Dashboards, working with apps, building advanced dashboards, configuring and extending Splunk, advanced deployments, and more. Finally, we teach you how to use the Machine Learning Toolkit and best practices and tips to help you implement Splunk services effectively and efficiently. By the end of this book, you will have learned about the Splunk software as a whole and implemented Splunk services in your tasks at projects What you will learn Focus on the new features of the latest version of Splunk Enterprise 7 Master the new offerings in Splunk: Splunk Cloud and the Machine Learning Toolkit Create efficient and effective searches within the organization Master the use of Splunk tables, charts, and graph enhancements Use Splunk data models and pivots with faster data model acceleration Master all aspects of Splunk XML dashboards with hands-on applications Create and deploy advanced Splunk dashboards to share valuable business insights with peers Who this book is forThis book is intended for data analysts, business analysts, and IT administrators who want to make the best use of big data, operational intelligence, log management, and monitoring within their organization. Some knowledge of Splunk services will help you get the most out of the book

VB.Net Code Warrior - Working with SQL Client and Dataset (Paperback): Richard Thomas Edwards VB.Net Code Warrior - Working with SQL Client and Dataset (Paperback)
Richard Thomas Edwards
R380 Discovery Miles 3 800 Ships in 18 - 22 working days
VB.Net And OLEDB - Working with the Datatable (Paperback): Richard Thomas Edwards VB.Net And OLEDB - Working with the Datatable (Paperback)
Richard Thomas Edwards
R380 Discovery Miles 3 800 Ships in 18 - 22 working days
VB.Net And SQL Client - Working with the Datatable (Paperback): Richard Thomas Edwards VB.Net And SQL Client - Working with the Datatable (Paperback)
Richard Thomas Edwards
R380 Discovery Miles 3 800 Ships in 18 - 22 working days
Powershell And Odbc - Working with the Dataview (Paperback): Richard Thomas Edwards Powershell And Odbc - Working with the Dataview (Paperback)
Richard Thomas Edwards
R368 Discovery Miles 3 680 Ships in 18 - 22 working days
Apache Spark Deep Learning Cookbook - Over 80 recipes that streamline deep learning in a distributed environment with Apache... Apache Spark Deep Learning Cookbook - Over 80 recipes that streamline deep learning in a distributed environment with Apache Spark (Paperback)
Ahmed Sherif, Amrith Ravindra
R1,520 Discovery Miles 15 200 Ships in 18 - 22 working days

A solution-based guide to put your deep learning models into production with the power of Apache Spark Key Features Discover practical recipes for distributed deep learning with Apache Spark Learn to use libraries such as Keras and TensorFlow Solve problems in order to train your deep learning models on Apache Spark Book DescriptionWith deep learning gaining rapid mainstream adoption in modern-day industries, organizations are looking for ways to unite popular big data tools with highly efficient deep learning libraries. As a result, this will help deep learning models train with higher efficiency and speed. With the help of the Apache Spark Deep Learning Cookbook, you'll work through specific recipes to generate outcomes for deep learning algorithms, without getting bogged down in theory. From setting up Apache Spark for deep learning to implementing types of neural net, this book tackles both common and not so common problems to perform deep learning on a distributed environment. In addition to this, you'll get access to deep learning code within Spark that can be reused to answer similar problems or tweaked to answer slightly different problems. You will also learn how to stream and cluster your data with Spark. Once you have got to grips with the basics, you'll explore how to implement and deploy deep learning models, such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) in Spark, using popular libraries such as TensorFlow and Keras. By the end of the book, you'll have the expertise to train and deploy efficient deep learning models on Apache Spark. What you will learn Set up a fully functional Spark environment Understand practical machine learning and deep learning concepts Apply built-in machine learning libraries within Spark Explore libraries that are compatible with TensorFlow and Keras Explore NLP models such as Word2vec and TF-IDF on Spark Organize dataframes for deep learning evaluation Apply testing and training modeling to ensure accuracy Access readily available code that may be reusable Who this book is forIf you're looking for a practical and highly useful resource for implementing efficiently distributed deep learning models with Apache Spark, then the Apache Spark Deep Learning Cookbook is for you. Knowledge of the core machine learning concepts and a basic understanding of the Apache Spark framework is required to get the best out of this book. Additionally, some programming knowledge in Python is a plus.

Analytics for the Internet of Things (IoT) (Paperback): Andrew Minteer Analytics for the Internet of Things (IoT) (Paperback)
Andrew Minteer
R1,194 Discovery Miles 11 940 Ships in 18 - 22 working days

Break through the hype and learn how to extract actionable intelligence from the flood of IoT data About This Book * Make better business decisions and acquire greater control of your IoT infrastructure * Learn techniques to solve unique problems associated with IoT and examine and analyze data from your IoT devices * Uncover the business potential generated by data from IoT devices and bring down business costs Who This Book Is For This book targets developers, IoT professionals, and those in the field of data science who are trying to solve business problems through IoT devices and would like to analyze IoT data. IoT enthusiasts, managers, and entrepreneurs who would like to make the most of IoT will find this equally useful. A prior knowledge of IoT would be helpful but is not necessary. Some prior programming experience would be useful What You Will Learn * Overcome the challenges IoT data brings to analytics * Understand the variety of transmission protocols for IoT along with their strengths and weaknesses * Learn how data flows from the IoT device to the final data set * Develop techniques to wring value from IoT data * Apply geospatial analytics to IoT data * Use machine learning as a predictive method on IoT data * Implement best strategies to get the most from IoT analytics * Master the economics of IoT analytics in order to optimize business value In Detail We start with the perplexing task of extracting value from huge amounts of barely intelligible data. The data takes a convoluted route just to be on the servers for analysis, but insights can emerge through visualization and statistical modeling techniques. You will learn to extract value from IoT big data using multiple analytic techniques. Next we review how IoT devices generate data and how the information travels over networks. You'll get to know strategies to collect and store the data to optimize the potential for analytics, and strategies to handle data quality concerns. Cloud resources are a great match for IoT analytics, so Amazon Web Services, Microsoft Azure, and PTC ThingWorx are reviewed in detail next. Geospatial analytics is then introduced as a way to leverage location information. Combining IoT data with environmental data is also discussed as a way to enhance predictive capability. We'll also review the economics of IoT analytics and you'll discover ways to optimize business value. By the end of the book, you'll know how to handle scale for both data storage and analytics, how Apache Spark can be leveraged to handle scalability, and how R and Python can be used for analytic modeling. Style and approach This book follows a step-by-step, practical approach to combine the power of analytics and IoT and help you get results quickly

Advanced Splunk (Paperback): Ashish Kumar Tulsiram Yadav Advanced Splunk (Paperback)
Ashish Kumar Tulsiram Yadav
R1,304 Discovery Miles 13 040 Ships in 18 - 22 working days

Master the art of getting the maximum out of your machine data using Splunk About This Book * A practical and comprehensive guide to the advanced functions of Splunk,, including the new features of Splunk 6.3 * Develop and manage your own Splunk apps for greater insight from your machine data * Full coverage of high-level Splunk techniques including advanced searches, manipulations, and visualization Who This Book Is For This book is for Splunk developers looking to learn advanced strategies to deal with big data from an enterprise architectural perspective. It is expected that readers have a basic understanding and knowledge of using Splunk Enterprise. What You Will Learn * Find out how to develop and manage apps in Splunk * Work with important search commands to perform data analytics on uploaded data * Create visualizations in Splunk * Explore tweaking Splunk * Integrate Splunk with any pre-existing application to perform data crunching efficiently and in real time * Make your big data speak with analytics and visualizations using Splunk * Use SDK and Enterprise integration with tools such as R and Tableau In Detail Master the power of Splunk and learn the advanced strategies to get the most out of your machine data with this practical advanced guide. Make sense of the hidden data of your organization - the insight of your servers, devices, logs, traffic and clouds. Advanced Splunk shows you how. Dive deep into Splunk to find the most efficient solution to your data problems. Create the robust Splunk solutions you need to make informed decisions in big data machine analytics. From visualizations to enterprise integration, this well-organized high level guide has everything you need for Splunk mastery. Start with a complete overview of all the new features and advantages of the latest version of Splunk and the Splunk Environment. Go hands on with uploading data, search commands for basic and advanced analytics, advanced visualization techniques, and dashboard customizing. Discover how to tweak Splunk to your needs, and get a complete on Enterprise Integration of Splunk with various analytics and visualization tools. Finally, discover how to set up and use all the new features of the latest version of Splunk. Style and approach This book follows a step by step approach. Every new concept is built on top of its previous chapter, and it is full of examples and practical scenarios to help the reader experiment as they read.

Regression Analysis with R - Design and develop statistical nodes to identify unique relationships within data at scale... Regression Analysis with R - Design and develop statistical nodes to identify unique relationships within data at scale (Paperback)
Giuseppe Ciaburro
R1,109 Discovery Miles 11 090 Ships in 18 - 22 working days

Build effective regression models in R to extract valuable insights from real data Key Features Implement different regression analysis techniques to solve common problems in data science - from data exploration to dealing with missing values From Simple Linear Regression to Logistic Regression - this book covers all regression techniques and their implementation in R A complete guide to building effective regression models in R and interpreting results from them to make valuable predictions Book DescriptionRegression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables. This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are - supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process - loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples. By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects. What you will learn Get started with the journey of data science using Simple linear regression Deal with interaction, collinearity and other problems using multiple linear regression Understand diagnostics and what to do if the assumptions fail with proper analysis Load your dataset, treat missing values, and plot relationships with exploratory data analysis Develop a perfect model keeping overfitting, under-fitting, and cross-validation into consideration Deal with classification problems by applying Logistic regression Explore other regression techniques - Decision trees, Bagging, and Boosting techniques Learn by getting it all in action with the help of a real world case study. Who this book is forThis book is intended for budding data scientists and data analysts who want to implement regression analysis techniques using R. If you are interested in statistics, data science, machine learning and wants to get an easy introduction to the topic, then this book is what you need! Basic understanding of statistics and math will help you to get the most out of the book. Some programming experience with R will also be helpful

Big Data Analytics with SAS (Paperback): David Pope Big Data Analytics with SAS (Paperback)
David Pope
R1,164 Discovery Miles 11 640 Ships in 18 - 22 working days

Leverage the capabilities of SAS to process and analyze Big Data About This Book * Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics * Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS * Practical, real-world examples on predictive modeling, forecasting, optimizing and reporting your Big Data analysis with SAS Who This Book Is For SAS professionals and data analysts who wish to perform analytics on Big Data using SAS to gain actionable insights will find this book to be very useful. If you are a data science professional looking to perform large-scale analytics with SAS, this book will also help you. A basic understanding of SAS will be helpful, but is not mandatory. What You Will Learn * Configure a free version of SAS in order do hands-on exercises dealing with data management, analysis, and reporting. * Understand the basic concepts of the SAS language which consists of the data step (for data preparation) and procedures (or PROCs) for analysis. * Make use of the web browser based SAS Studio and iPython Jupyter Notebook interfaces for coding in the SAS, DS2, and FedSQL programming languages. * Understand how the DS2 programming language plays an important role in Big Data preparation and analysis using SAS * Integrate and work efficiently with Big Data platforms like Hadoop, SAP HANA, and cloud foundry based systems. In Detail SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one's career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data. The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS's architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you will be able to clearly understand how you can efficiently analyze Big Data using SAS. Style and approach The book starts off by introducing the reader to SAS and the SAS programming language which provides data management, analytical, and reporting capabilities. Most chapters include hands on examples which highlights how SAS provides The Power to Know (c). The reader will learn that if they are looking to perform large-scale data analysis that SAS provides an open platform engineered and designed to scale both up and out which allows the power of SAS to combine with open source offerings such as Hadoop, Python, and R.

Social-Media-Analyse - mehr als nur eine Wordcloud - HMD Best Paper Award 2016 (German, Paperback, 1. Aufl. 2017): Matthias... Social-Media-Analyse - mehr als nur eine Wordcloud - HMD Best Paper Award 2016 (German, Paperback, 1. Aufl. 2017)
Matthias Boeck, Felix Koebler, Eva Anderl, Linda Le
R321 Discovery Miles 3 210 Ships in 10 - 15 working days

Die Autoren legen beispielhafte Analysemethoden von Social-Media-Daten dar: deskriptive und Data-Mining-Methoden. Mit deren Hilfe werden kundenorientierte Geschaftsmassnahmen eingeleitet und ein stetiges Abwagen zwischen vollautomatisierten und manuellen, kostenintensiven Reports gesteuert. Das Werk liefert eine UEbersicht zu aktuell diskutierten Themen wie begleitende Emotionen, Vernetzung der interagierenden User oder Verbindung von Themen. Als Gewinn fur ein Unternehmen mussen die Analysen durch eine strategische Prozedur geleitet werden, um Erkenntnisse in konkrete Handlungsempfehlungen zu uberfuhren. Neben den Potenzialen durch die Anwendung komplexerer Analysemethoden gibt es auch konzeptionelle, technische und ethische Herausforderungen, wie die Autoren veranschaulichen.

Mastering Apache Solr 7.x - An expert guide to advancing, optimizing, and scaling your enterprise search (Paperback): Sandeep... Mastering Apache Solr 7.x - An expert guide to advancing, optimizing, and scaling your enterprise search (Paperback)
Sandeep Nair, Chintan Mehta, Dharmesh Vasoya
R1,074 Discovery Miles 10 740 Ships in 18 - 22 working days

Accelerate your enterprise search engine and bring relevancy in your search analytics Key Features A practical guide in building expertise with Indexing, Faceting, Clustering and Pagination Master the management and administration of Enterprise Search Applications and services seamlessly Handle multiple data inputs such as JSON, xml, pdf, doc, xls,ppt, csv and much more. Book DescriptionApache Solr is the only standalone enterprise search server with a REST-like application interface. providing highly scalable, distributed search and index replication for many of the world's largest internet sites. To begin with, you would be introduced to how you perform full text search, multiple filter search, perform dynamic clustering and so on helping you to brush up the basics of Apache Solr. You will also explore the new features and advanced options released in Apache Solr 7.x which will get you numerous performance aspects and making data investigation simpler, easier and powerful. You will learn to build complex queries, extensive filters and how are they compiled in your system to bring relevance in your search tools. You will learn to carry out Solr scoring, elements affecting the document score and how you can optimize or tune the score for the application at hand. You will learn to extract features of documents, writing complex queries in re-ranking the documents. You will also learn advanced options helping you to know what content is indexed and how the extracted content is indexed. Throughout the book, you would go through complex problems with solutions along with varied approaches to tackle your business needs. By the end of this book, you will gain advanced proficiency to build out-of-box smart search solutions for your enterprise demands. What you will learn Design schema using schema API to access data in the database Advance querying and fine-tuning techniques for better performance Get to grips with indexing using Client API Set up a fault tolerant and highly available server with newer distributed capabilities, SolrCloud Explore Apache Tika to upload data with Solr Cell Understand different data operations that can be done while indexing Master advanced querying through Velocity Search UI, faceting and Query Re-ranking, pagination and spatial search Learn to use JavaScript, Python, SolrJ and Ruby for interacting with Solr Who this book is forThe book would rightly appeal to developers, software engineers, data engineers and database architects who are building or seeking to build enterprise-wide effective search engines for business intelligence. Prior experience of Apache Solr or Java programming is must to take the best of this book.

Hacking University - Computer Hacking and Learn Linux 2 Manuscript Bundle: Essential Beginners Guide on How to Become an... Hacking University - Computer Hacking and Learn Linux 2 Manuscript Bundle: Essential Beginners Guide on How to Become an Amateur Hacker and A Complete Step by Step Guide To Learn And Conquer the Linux Operating System (Paperback)
Isaac D Cody
R505 Discovery Miles 5 050 Ships in 18 - 22 working days
Mastering Microsoft Power BI - Expert techniques for effective data analytics and business intelligence (Paperback): Brett... Mastering Microsoft Power BI - Expert techniques for effective data analytics and business intelligence (Paperback)
Brett Powell
R1,511 Discovery Miles 15 110 Ships in 18 - 22 working days

Design, create and manage robust Power BI solutions to gain meaningful business insights Key Features Master all the dashboarding and reporting features of Microsoft Power BI Combine data from multiple sources, create stunning visualizations and publish your reports across multiple platforms A comprehensive guide with real-world use cases and examples demonstrating how you can get the best out of Microsoft Power BI Book DescriptionThis book is intended for business intelligence professionals responsible for the design and development of Power BI content as well as managers, architects and administrators who oversee Power BI projects and deployments. The chapters flow from the planning of a Power BI project through the development and distribution of content to the administration of Power BI for an organization. BI developers will learn how to create sustainable and impactful Power BI datasets, reports, and dashboards. This includes connecting to data sources, shaping and enhancing source data, and developing an analytical data model. Additionally, top report and dashboard design practices are described using features such as Bookmarks and the Power KPI visual. BI managers will learn how Power BI's tools work together such as with the On-premises data gateway and how content can be staged and securely distributed via Apps. Additionally, both the Power BI Report Server and Power BI Premium are reviewed. By the end of this book, you will be confident in creating effective charts, tables, reports or dashboards for any kind of data using the tools and techniques in Microsoft Power BI. What you will learn Build efficient data retrieval and transformation processes with the Power Query M Language Design scalable, user-friendly DirectQuery and Import Data Models Develop visually rich, immersive, and interactive reports and dashboards Maintain version control and stage deployments across development, test, and production environments Manage and monitor the Power BI Service and the On-premises data gateway Develop a fully on-premise solution with the Power BI Report Server Scale up a Power BI solution via Power BI Premium capacity and migration to Azure Analysis Services or SQL Server Analysis Services Who this book is forBusiness Intelligence professionals and existing Power BI users looking to master Power BI for all their data visualization and dashboarding needs will find this book to be useful. While understanding of the basic BI concepts is required, some exposure to Microsoft Power BI will be helpful.

IPython Interactive Computing and Visualization Cookbook - Over 100 hands-on recipes to sharpen your skills in high-performance... IPython Interactive Computing and Visualization Cookbook - Over 100 hands-on recipes to sharpen your skills in high-performance numerical computing and data science in the Jupyter Notebook, 2nd Edition (Paperback, 2nd Revised edition)
Cyrille Rossant
R1,046 Discovery Miles 10 460 Ships in 18 - 22 working days

Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book DescriptionPython is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is forThis book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Practical Big Data Analytics - Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark,... Practical Big Data Analytics - Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R (Paperback)
Nataraj Dasgupta
R1,206 Discovery Miles 12 060 Ships in 18 - 22 working days

Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book DescriptionBig Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is forThe book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.

pgRouting - A Practical Guide (Paperback): Regina O. Obe, Leo S. Hsu pgRouting - A Practical Guide (Paperback)
Regina O. Obe, Leo S. Hsu; Edited by Gary E. Sherman
R1,276 Discovery Miles 12 760 Ships in 18 - 22 working days
Apache Spark 2.x for Java Developers (Paperback): Sourav Gulati, Sumit Kumar Apache Spark 2.x for Java Developers (Paperback)
Sourav Gulati, Sumit Kumar
R1,308 Discovery Miles 13 080 Ships in 18 - 22 working days

Unleash the data processing and analytics capability of Apache Spark with the language of choice: Java About This Book * Perform big data processing with Spark-without having to learn Scala! * Use the Spark Java API to implement efficient enterprise-grade applications for data processing and analytics * Go beyond mainstream data processing by adding querying capability, Machine Learning, and graph processing using Spark Who This Book Is For If you are a Java developer interested in learning to use the popular Apache Spark framework, this book is the resource you need to get started. Apache Spark developers who are looking to build enterprise-grade applications in Java will also find this book very useful. What You Will Learn * Process data using different file formats such as XML, JSON, CSV, and plain and delimited text, using the Spark core Library. * Perform analytics on data from various data sources such as Kafka, and Flume using Spark Streaming Library * Learn SQL schema creation and the analysis of structured data using various SQL functions including Windowing functions in the Spark SQL Library * Explore Spark Mlib APIs while implementing Machine Learning techniques to solve real-world problems * Get to know Spark GraphX so you understand various graph-based analytics that can be performed with Spark In Detail Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone. The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages. By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications. Style and approach This practical guide teaches readers the fundamentals of the Apache Spark framework and how to implement components using the Java language. It is a unique blend of theory and practical examples, and is written in a way that will gradually build your knowledge of Apache Spark.

Implementing Tableau Server - A Guide to implementing Tableau Server (Paperback): Chandraish Sinha Implementing Tableau Server - A Guide to implementing Tableau Server (Paperback)
Chandraish Sinha
R416 Discovery Miles 4 160 Ships in 18 - 22 working days
Tableau Questions & Answers - Guide to Tableau concepts and FAQs (Paperback): Chandraish Sinha Tableau Questions & Answers - Guide to Tableau concepts and FAQs (Paperback)
Chandraish Sinha
R298 Discovery Miles 2 980 Ships in 18 - 22 working days
Tableau 10 Bootcamp (Paperback): Joshua N Milligan, Donabel Santos Tableau 10 Bootcamp (Paperback)
Joshua N Milligan, Donabel Santos
R915 Discovery Miles 9 150 Ships in 18 - 22 working days

Sharpen your data visualization skills with Tableau 10 Bootcamp. About This Book * Make informed decisions using powerful visualizations in Tableau * Learn effective data storytelling to transform how your business uses ideas * Use this extensive bootcamp that makes you an efficient Tableau user in a short span of time Who This Book Is For This book caters to business, data, and analytics professionals who want to build rich interactive visualizations using Tableau Desktop. Familiarity with previous versions of Tableau will be helpful, but not necessary. What You Will Learn * Complete practical Tableau tasks with each chapter * Build different types of charts in Tableau with ease * Extend data using calculated fields and parameters * Prepare and refine data for analysis * Create engaging and interactive dashboards * Present data effectively using story points In Detail Tableau is a leading visual analytics software that can uncover insights for better and smarter decision-making. Tableau has an uncanny ability to beautify your data, compared to other BI tools, which makes it an ideal choice for performing fast and easy visual analysis. A military camp style fast-paced learning book that builds your understanding of Tableau 10 in no time. This day based learning guide contains the best elements from two of our published books, Learning Tableau 10 - Second Edition and Tableau 10 Business Intelligence Cookbook, and delivers practical, learning modules in manageable chunks. Each chunk is delivered in a "day", and each "day" is a productive day. Each day builds your competency in Tableau. You will increase your competence in integrating analytics and forecasting to enhance data analysis during the course of this Bootcamp. Each chapter presents core concepts and key takeaways about a topic in Tableau and provides a series of hands-on exercises. In addition to these exercises, at the end of the chapter, you will find self-check quizzes and extra drills to challenge you, to take what you learned to the next level. To summarize, this book will equip you with step-by-step instructions through rigorous tasks, practical callouts, and various real-world examples and assignments to reinforce your understanding of Tableau 10. Style and approach A fast paced book filled with highly-effective real-world examples to help you build new things and help you in solving problems in newer and unseen ways.

Learning Kibana 5.0 (Paperback): Bahaaldine Azarmi Learning Kibana 5.0 (Paperback)
Bahaaldine Azarmi
R1,055 Discovery Miles 10 550 Ships in 18 - 22 working days

Exploit the visualization capabilities of Kibana and build powerful interactive dashboards About This Book * Introduction to data-driven architecture and the Elastic stack * Build effective dashboards for data visualization and explore datasets with Elastic Graph * A comprehensive guide to learning scalable data visualization techniques in Kibana Who This Book Is For If you are a developer, data visualization engineer, or data scientist who wants to get the best of data visualization at scale then this book is perfect for you. A basic understanding of Elasticsearch and Logstash is required to make the best use of this book. What You Will Learn * How to create visualizations in Kibana * Ingest log data, structure an Elasticsearch cluster, and create visualization assets in Kibana * Embed Kibana visualization on web pages * Scaffold, develop, and deploy new Kibana & Timelion customizations * Build a metrics dashboard in Timelion based on time series data * Use the Graph plugin visualization feature and leverage a graph query * Create, implement, package, and deploy a new custom plugin * Use Prelert to solve anomaly detection challenges In Detail Kibana is an open source data visualization platform that allows you to interact with your data through stunning, powerful graphics. Its simple, browser-based interface enables you to quickly create and share dynamic dashboards that display changes to Elasticsearch queries in real time. In this book, you'll learn how to use the Elastic stack on top of a data architecture to visualize data in real time. All data architectures have different requirements and expectations when it comes to visualizing the data, whether it's logging analytics, metrics, business analytics, graph analytics, or scaling them as per your business requirements. This book will help you master Elastic visualization tools and adapt them to the requirements of your project. You will start by learning how to use the basic visualization features of Kibana 5. Then you will be shown how to implement a pure metric analytics architecture and visualize it using Timelion, a very recent and trendy feature of the Elastic stack. You will learn how to correlate data using the brand-new Graph visualization and build relationships between documents. Finally, you will be familiarized with the setup of a Kibana development environment so that you can build a custom Kibana plugin. By the end of this book you will have all the information needed to take your Elastic stack skills to a new level of data visualization. Style and approach This book takes a comprehensive, step-by-step approach to working with the visualization aspects of the Elastic stack. Every concept is presented in a very easy-to-follow manner that shows you both the logic and method of implementation. Real world cases are referenced to highlight how each of the key concepts can be put to practical use.

R: Recipes for Analysis, Visualization and Machine Learning (Paperback): Viswa Viswanathan, Shanthi Viswanathan, Atmajitsinh... R: Recipes for Analysis, Visualization and Machine Learning (Paperback)
Viswa Viswanathan, Shanthi Viswanathan, Atmajitsinh Gohil, Yu-Wei, Chiu (David Chiu)
R2,189 Discovery Miles 21 890 Ships in 18 - 22 working days

Get savvy with R language and actualize projects aimed at analysis, visualization and machine learning About This Book * Proficiently analyze data and apply machine learning techniques * Generate visualizations, develop interactive visualizations and applications to understand various data exploratory functions in R * Construct a predictive model by using a variety of machine learning packages Who This Book Is For This Learning Path is ideal for those who have been exposed to R, but have not used it extensively yet. It covers the basics of using R and is written for new and intermediate R users interested in learning. This Learning Path also provides in-depth insights into professional techniques for analysis, visualization, and machine learning with R - it will help you increase your R expertise, regardless of your level of experience. What You Will Learn * Get data into your R environment and prepare it for analysis * Perform exploratory data analyses and generate meaningful visualizations of the data * Generate various plots in R using the basic R plotting techniques * Create presentations and learn the basics of creating apps in R for your audience * Create and inspect the transaction dataset, performing association analysis with the Apriori algorithm * Visualize associations in various graph formats and find frequent itemset using the ECLAT algorithm * Build, tune, and evaluate predictive models with different machine learning packages * Incorporate R and Hadoop to solve machine learning problems on big data In Detail The R language is a powerful, open source, functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics. This Learning Path is chock-full of recipes. Literally! It aims to excite you with awesome projects focused on analysis, visualization, and machine learning. We'll start off with data analysis - this will show you ways to use R to generate professional analysis reports. We'll then move on to visualizing our data - this provides you with all the guidance needed to get comfortable with data visualization with R. Finally, we'll move into the world of machine learning - this introduces you to data classification, regression, clustering, association rule mining, and dimension reduction. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: * R Data Analysis Cookbook by Viswa Viswanathan and Shanthi Viswanathan * R Data Visualization Cookbook by Atmajitsinh Gohil * Machine Learning with R Cookbook by Yu-Wei, Chiu (David Chiu) Style and approach This course creates a smooth learning path that will teach you how to analyze data and create stunning visualizations. The step-by-step instructions provided for each recipe in this comprehensive Learning Path will show you how to create machine learning projects with R.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Higher Education - New Approaches to…
Lee Waller, Sharon Waller Hardcover R3,587 Discovery Miles 35 870
Predicaments Of Knowledge…
Suren Pillay Paperback R330 R305 Discovery Miles 3 050
Student Feedback - The Cornerstone to an…
Chenicheri Sid Nair, Patricie Mertova Paperback R1,457 Discovery Miles 14 570
Leadership Wellness and Mental Health…
Cynthia J. Alexander Hardcover R5,440 Discovery Miles 54 400
Entrepreneurship in Action - The Power…
Eric W. Liguori, Mark Tonelli Hardcover R2,812 Discovery Miles 28 120
The Oxford Handbook of Higher Education…
Gordon Redding, Antony Drew, … Hardcover R4,155 Discovery Miles 41 550
Free Fall - Why South African…
Malcolm Ray Paperback  (5)
R320 R295 Discovery Miles 2 950
Enhancing Learning and Teaching Through…
Chenicheri Sid Nair, Patricie Mertova Paperback R1,279 Discovery Miles 12 790
Teaching-Learning dynamics
Monica Jacobs, Ntombizolile Vakalisa, … Paperback R618 Discovery Miles 6 180
Teaching Information Literacy for…
Mark Hepworth, Geoff Walton Paperback R1,640 Discovery Miles 16 400

 

Partners