![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing. Key Features Clear and concise explanations Gives important insights into deep learning models Practical demonstration of key concepts Book DescriptionPyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease. What you will learn Set up the deep learning environment using the PyTorch library Learn to build a deep learning model for image classification Use a convolutional neural network for transfer learning Understand to use PyTorch for natural language processing Use a recurrent neural network to classify text Understand how to optimize PyTorch in multiprocessor and distributed environments Train, optimize, and deploy your neural networks for maximum accuracy and performance Learn to deploy production-ready models Who this book is forDevelopers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.
Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep learning concepts and their implementations Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow. Book DescriptionDeep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks. What you will learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges. Who this book is forIf you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.
Understand the Ethereum platform to build distributed applications that are secured and decentralized using blockchain technology Key Features Build your own decentralized applications using real-world blockchain examples Implement Ethereum for building smart contracts and cryptocurrency applications with easy-to-follow projects Enhance your application security with blockchain Book DescriptionEthereum enables the development of efficient, smart contracts that contain code. These smart contracts can interact with other smart contracts to make decisions, store data, and send Ether to others.Ethereum Projects for Beginners provides you with a clear introduction to creating cryptocurrencies, smart contracts, and decentralized applications. As you make your way through the book, you'll get to grips with detailed step-by-step processes to build advanced Ethereum projects. Each project will teach you enough about Ethereum to be productive right away. You will learn how tokenization works, think in a decentralized way, and build blockchain-based distributed computing systems. Towards the end of the book, you will develop interesting Ethereum projects such as creating wallets and secure data sharing.By the end of this book, you will be able to tackle blockchain challenges by implementing end-to-end projects using the full power of the Ethereum blockchain. What you will learn Develop your ideas fast and efficiently using the Ethereum blockchain Make writing and deploying smart contracts easy and manageable Work with private data in blockchain applications Handle large files in blockchain applications Ensure your decentralized applications are safe Explore how Ethereum development frameworks work Create your own cryptocurrency or token on the Ethereum blockchain Make sure your cryptocurrency is ERC20-compliant to launch an ICO Who this book is forThis book is for individuals who want to build decentralized applications using blockchain technology and the power of Ethereum from scratch. Some prior knowledge of JavaScript is required, since most examples use a web frontend.
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book DescriptionGet to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is forThis book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
No need to spend hours ploughing through endless data - let Spark, one of the fastest big data processing engines available, do the hard work for you. Key Features Get up and running with Apache Spark and Python Integrate Spark with AWS for real-time analytics Apply processed data streams to machine learning APIs of Apache Spark Book DescriptionProcessing big data in real time is challenging due to scalability, information consistency, and fault-tolerance. This book teaches you how to use Spark to make your overall analytical workflow faster and more efficient. You'll explore all core concepts and tools within the Spark ecosystem, such as Spark Streaming, the Spark Streaming API, machine learning extension, and structured streaming. You'll begin by learning data processing fundamentals using Resilient Distributed Datasets (RDDs), SQL, Datasets, and Dataframes APIs. After grasping these fundamentals, you'll move on to using Spark Streaming APIs to consume data in real time from TCP sockets, and integrate Amazon Web Services (AWS) for stream consumption. By the end of this book, you'll not only have understood how to use machine learning extensions and structured streams but you'll also be able to apply Spark in your own upcoming big data projects. What you will learn Write your own Python programs that can interact with Spark Implement data stream consumption using Apache Spark Recognize common operations in Spark to process known data streams Integrate Spark streaming with Amazon Web Services (AWS) Create a collaborative filtering model with the movielens dataset Apply processed data streams to Spark machine learning APIs Who this book is forData Processing with Apache Spark is for you if you are a software engineer, architect, or IT professional who wants to explore distributed systems and big data analytics. Although you don't need any knowledge of Spark, prior experience of working with Python is recommended.
Progressively explore UI development with Shiny via practical examples Key Features Write a Shiny interface in pure HTML Explore powerful layout functions to make attractive dashboards and other intuitive interfaces Get to grips with Bootstrap and leverage it in your Shiny applications Book DescriptionAlthough vanilla Shiny applications look attractive with some layout flexibility, you may still want to have more control over how the interface is laid out to produce a dashboard. Hands-On Dashboard Development with Shiny helps you incorporate this in your applications. The book starts by guiding you in producing an application based on the diamonds dataset included in the ggplot2 package. You'll create a single application, but the interface will be reskinned and rebuilt throughout using different methods to illustrate their uses and functions using HTML, CSS, and JavaScript. You will also learn to develop an application that creates documents and reports using R Markdown. Furthermore, the book demonstrates the use of HTML templates and the Bootstrap framework. Moving along, you will learn how to produce dashboards using the Shiny command and dashboard package. Finally, you will learn how to lay out applications using a wide range of built-in functions. By the end of the book, you will have an understanding of the principles that underpin layout in Shiny applications, including sections of HTML added to a vanilla Shiny application, HTML interfaces written from scratch, dashboards, navigation bars, and interfaces. What you will learn Add HTML to a Shiny application and write its interfaces from scratch in HTML Use built-in Shiny functions to produce attractive and flexible layouts Produce dashboards, adding icons and notifications Explore Bootstrap themes to lay out your applications Get insights into UI development with hands-on examples Use R Markdown to create and download reports Who this book is forIf you have some experience writing Shiny applications and want to use HTML, CSS, and Bootstrap to make custom interfaces, then this book is for you.
A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark About This Book * Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data * Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images * A hands-on guide to understanding the nature of data and how to turn it into insight Who This Book Is For This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed. What You Will Learn * Acquire, format, and visualize your data * Build an image-similarity search engine * Generate meaningful visualizations anyone can understand * Get started with analyzing social network graphs * Find out how to implement sentiment text analysis * Install data analysis tools such as Pandas, MongoDB, and Apache Spark * Get to grips with Apache Spark * Implement machine learning algorithms such as classification or forecasting In Detail Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service. This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark. Style and approach This is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.
Learn to view, edit and analyse geospatial data using QGIS and Python 3 Key Features Leverage the power of QGIS to add professionalism to your maps Explore and work with the newly released features like Python 3, GeoPackage, 3D views, Print layouts in QGIS 3.4 Build your own plugins and customize maps using QT designer Book DescriptionQGIS 3.4 is the first LTR (long term release) of QGIS version 3. This is a giant leap forward for the project with tons of new features and impactful changes. Learn QGIS is fully updated for QGIS 3.4, covering its processing engine update, Python 3 de-facto coding environment, and the GeoPackage format. This book will help you get started on your QGIS journey, guiding you to develop your own processing pathway. You will explore the user interface, loading your data, editing, and then creating data. QGIS often surprises new users with its mapping capabilities; you will discover how easily you can style and create your first map. But that's not all! In the final part of the book, you'll learn about spatial analysis and the powerful tools in QGIS, and conclude by looking at Python processing options. By the end of the book, you will have become proficient in geospatial analysis using QGIS and Python. What you will learn Explore various ways to load data into QGIS Understand how to style data and present it in a map Create maps and explore ways to expand them Get acquainted with the new processing toolbox in QGIS 3.4 Manipulate your geospatial data and gain quality insights Understand how to customize QGIS 3.4 Work with QGIS 3.4 in 3D Who this book is forIf you are a developer or consultant familiar with the basic functions and processes of GIS and want to learn how to use QGIS to analyze geospatial data and create rich mapping applications, this book is for you. You'll also find this book useful if you're new to QGIS and wish to grasp its fundamentals
Leverage Splunk's operational intelligence capabilities to unlock new hidden business insights and drive success Key Features Tackle any problems related to searching and analyzing your data with Splunk Get the latest information and business insights on Splunk 7.x Explore the all new machine learning toolkit in Splunk 7.x Book DescriptionSplunk makes it easy for you to take control of your data, and with Splunk Operational Cookbook, you can be confident that you are taking advantage of the Big Data revolution and driving your business with the cutting edge of operational intelligence and business analytics. With more than 80 recipes that demonstrate all of Splunk's features, not only will you find quick solutions to common problems, but you'll also learn a wide range of strategies and uncover new ideas that will make you rethink what operational intelligence means to you and your organization. You'll discover recipes on data processing, searching and reporting, dashboards, and visualizations to make data shareable, communicable, and most importantly meaningful. You'll also find step-by-step demonstrations that walk you through building an operational intelligence application containing vital features essential to understanding data and to help you successfully integrate a data-driven way of thinking in your organization. Throughout the book, you'll dive deeper into Splunk, explore data models and pivots to extend your intelligence capabilities, and perform advanced searching with machine learning to explore your data in even more sophisticated ways. Splunk is changing the business landscape, so make sure you're taking advantage of it. What you will learn Learn how to use Splunk to gather, analyze, and report on data Create dashboards and visualizations that make data meaningful Build an intelligent application with extensive functionalities Enrich operational data with lookups and workflows Model and accelerate data and perform pivot-based reporting Apply ML algorithms for forecasting and anomaly detection Summarize data for long term trending, reporting, and analysis Integrate advanced JavaScript charts and leverage Splunk's API Who this book is forThis book is intended for data professionals who are looking to leverage the Splunk Enterprise platform as a valuable operational intelligence tool. The recipes provided in this book will appeal to individuals from all facets of business, IT, security, product, marketing, and many more! Even the existing users of Splunk who want to upgrade and get up and running with Splunk 7.x will find this book to be of great value.
Perform efficient fast text representation and classification with Facebook's fastText library Key Features Introduction to Facebook's fastText library for NLP Perform efficient word representations, sentence classification, vector representation Build better, more scalable solutions for text representation and classification Book DescriptionFacebook's fastText library handles text representation and classification, used for Natural Language Processing (NLP). Most organizations have to deal with enormous amounts of text data on a daily basis, and gaining efficient data insights requires powerful NLP tools such as fastText. This book is your ideal introduction to fastText. You will learn how to create fastText models from the command line, without the need for complicated code. You will explore the algorithms that fastText is built on and how to use them for word representation and text classification. Next, you will use fastText in conjunction with other popular libraries and frameworks such as Keras, TensorFlow, and PyTorch. Finally, you will deploy fastText models to mobile devices. By the end of this book, you will have all the required knowledge to use fastText in your own applications at work or in projects. What you will learn Create models using the default command line options in fastText Understand the algorithms used in fastText to create word vectors Combine command line text transformation capabilities and the fastText library to implement a training, validation, and prediction pipeline Explore word representation and sentence classification using fastText Use Gensim and spaCy to load the vectors, transform, lemmatize, and perform other NLP tasks efficiently Develop a fastText NLP classifier using popular frameworks, such as Keras, Tensorflow, and PyTorch Who this book is forThis book is for data analysts, data scientists, and machine learning developers who want to perform efficient word representation and sentence classification using Facebook's fastText library. Basic knowledge of Python programming is required.
With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web Key Features Build industry-standard recommender systems Only familiarity with Python is required No need to wade through complicated machine learning theory to use this book Book DescriptionRecommendation systems are at the heart of almost every internet business today; from Facebook to Netflix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform. This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory-you'll get started with building and learning about recommenders as quickly as possible.. In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains. What you will learn Get to grips with the different kinds of recommender systems Master data-wrangling techniques using the pandas library Building an IMDB Top 250 Clone Build a content based engine to recommend movies based on movie metadata Employ data-mining techniques used in building recommenders Build industry-standard collaborative filters using powerful algorithms Building Hybrid Recommenders that incorporate content based and collaborative fltering Who this book is forIf you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.
Become the master player of data exploration by creating reproducible data processing pipelines, visualizations, and prediction models for your applications. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts such as SVM, KNN classifiers, and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book DescriptionGetting started with data science doesn't have to be an uphill battle. Applied Data Science with Python and Jupyter is a step-by-step guide ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction to these concepts. In this book, you'll learn every aspect of the standard data workflow process, including collecting, cleaning, investigating, visualizing, and modeling data. You'll start with the basics of Jupyter, which will be the backbone of the book. After familiarizing ourselves with its standard features, you'll look at an example of it in practice with our first analysis. In the next lesson, you dive right into predictive analytics, where multiple classification algorithms are implemented. Finally, the book ends by looking at data collection techniques. You'll see how web data can be acquired with scraping techniques and via APIs, and then briefly explore interactive visualizations. What you will learn Get up and running with the Jupyter ecosystem Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is forApplied Data Science with Python and Jupyter is ideal for professionals with a variety of job descriptions across a large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries such as Pandas, Matplotlib, and Pandas providing you a useful head start.
This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive. Key Features Grasp the skills needed to write efficient Hive queries to analyze the Big Data Discover how Hive can coexist and work with other tools within the Hadoop ecosystem Uses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3 Book DescriptionIn this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment. Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey. By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problems What you will learn Create and set up the Hive environment Discover how to use Hive's definition language to describe data Discover interesting data by joining and filtering datasets in Hive Transform data by using Hive sorting, ordering, and functions Aggregate and sample data in different ways Boost Hive query performance and enhance data security in Hive Customize Hive to your needs by using user-defined functions and integrate it with other tools Who this book is forIf you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book.
Enhance the power of NumPy and start boosting your scientific computing capabilities Key Features Grasp all aspects of numerical computing and understand NumPy Explore examples to learn exploratory data analysis (EDA), regression, and clustering Access NumPy libraries and use performance benchmarking to select the right tool Book DescriptionNumPy is one of the most important scientific computing libraries available for Python. Mastering Numerical Computing with NumPy teaches you how to achieve expert level competency to perform complex operations, with in-depth coverage of advanced concepts. Beginning with NumPy's arrays and functions, you will familiarize yourself with linear algebra concepts to perform vector and matrix math operations. You will thoroughly understand and practice data processing, exploratory data analysis (EDA), and predictive modeling. You will then move on to working on practical examples which will teach you how to use NumPy statistics in order to explore US housing data and develop a predictive model using simple and multiple linear regression techniques. Once you have got to grips with the basics, you will explore unsupervised learning and clustering algorithms, followed by understanding how to write better NumPy code while keeping advanced considerations in mind. The book also demonstrates the use of different high-performance numerical computing libraries and their relationship with NumPy. You will study how to benchmark the performance of different configurations and choose the best for your system. By the end of this book, you will have become an expert in handling and performing complex data manipulations. What you will learn Perform vector and matrix operations using NumPy Perform exploratory data analysis (EDA) on US housing data Develop a predictive model using simple and multiple linear regression Understand unsupervised learning and clustering algorithms with practical use cases Write better NumPy code and implement the algorithms from scratch Perform benchmark tests to choose the best configuration for your system Who this book is forMastering Numerical Computing with NumPy is for you if you are a Python programmer, data analyst, data engineer, or a data science enthusiast, who wants to master the intricacies of NumPy and build solutions for your numeric and scientific computational problems. You are expected to have familiarity with mathematics to get the most out of this book.
Combine the power of Apache Spark and Python to build effective big data applications Key Features Perform effective data processing, machine learning, and analytics using PySpark Overcome challenges in developing and deploying Spark solutions using Python Explore recipes for efficiently combining Python and Apache Spark to process data Book DescriptionApache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem. You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications. What you will learn Configure a local instance of PySpark in a virtual environment Install and configure Jupyter in local and multi-node environments Create DataFrames from JSON and a dictionary using pyspark.sql Explore regression and clustering models available in the ML module Use DataFrames to transform data used for modeling Connect to PubNub and perform aggregations on streams Who this book is forThe PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.
Learn how to create interactive and visually aesthetic plots using the Bokeh package in Python Key Features A step by step approach to creating interactive plots with Bokeh Go from installation all the way to deploying your very own Bokeh application Work with a real time datasets to practice and create your very own plots and applications Book DescriptionAdding a layer of interactivity to your plots and converting these plots into applications hold immense value in the field of data science. The standard approach to adding interactivity would be to use paid software such as Tableau, but the Bokeh package in Python offers users a way to create both interactive and visually aesthetic plots for free. This book gets you up to speed with Bokeh - a popular Python library for interactive data visualization. The book starts out by helping you understand how Bokeh works internally and how you can set up and install the package in your local machine. You then use a real world data set which uses stock data from Kaggle to create interactive and visually stunning plots. You will also learn how to leverage Bokeh using some advanced concepts such as plotting with spatial and geo data. Finally you will use all the concepts that you have learned in the previous chapters to create your very own Bokeh application from scratch. By the end of the book you will be able to create your very own Bokeh application. You will have gone through a step by step process that starts with understanding what Bokeh actually is and ends with building your very own Bokeh application filled with interactive and visually aesthetic plots. What you will learn Installing Bokeh and understanding its key concepts Creating plots using glyphs, the fundamental building blocks of Bokeh Creating plots using different data structures like NumPy and Pandas Using layouts and widgets to visually enhance your plots and add a layer of interactivity Building and hosting applications on the Bokeh server Creating advanced plots using spatial data Who this book is forThis book is well suited for data scientists and data analysts who want to perform interactive data visualization on their web browsers using Bokeh. Some exposure to Python programming will be helpful, but prior experience with Bokeh is not required.
A comprehensive guide to making machine data accessible across the organization using advanced dashboards Key Features Enrich machine-generated data and transform it into useful, meaningful insights Perform search operations and configurations, build dashboards, and manage logs Extend Splunk services with scripts and advanced configurations to process optimal results Book DescriptionSplunk is the leading platform that fosters an efficient methodology and delivers ways to search, monitor, and analyze growing amounts of big data. This book will allow you to implement new services and utilize them to quickly and efficiently process machine-generated big data. We introduce you to all the new features, improvements, and offerings of Splunk 7. We cover the new modules of Splunk: Splunk Cloud and the Machine Learning Toolkit to ease data usage. Furthermore, you will learn to use search terms effectively with Boolean and grouping operators. You will learn not only how to modify your search to make your searches fast but also how to use wildcards efficiently. Later you will learn how to use stats to aggregate values, a chart to turn data, and a time chart to show values over time; you'll also work with fields and chart enhancements and learn how to create a data model with faster data model acceleration. Once this is done, you will learn about XML Dashboards, working with apps, building advanced dashboards, configuring and extending Splunk, advanced deployments, and more. Finally, we teach you how to use the Machine Learning Toolkit and best practices and tips to help you implement Splunk services effectively and efficiently. By the end of this book, you will have learned about the Splunk software as a whole and implemented Splunk services in your tasks at projects What you will learn Focus on the new features of the latest version of Splunk Enterprise 7 Master the new offerings in Splunk: Splunk Cloud and the Machine Learning Toolkit Create efficient and effective searches within the organization Master the use of Splunk tables, charts, and graph enhancements Use Splunk data models and pivots with faster data model acceleration Master all aspects of Splunk XML dashboards with hands-on applications Create and deploy advanced Splunk dashboards to share valuable business insights with peers Who this book is forThis book is intended for data analysts, business analysts, and IT administrators who want to make the best use of big data, operational intelligence, log management, and monitoring within their organization. Some knowledge of Splunk services will help you get the most out of the book
Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book DescriptionPython is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python's most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is forBecome a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book |
You may like...
Responsible Corporate Strategy in…
Martin Loosemore, Florence Phua
Paperback
R1,292
Discovery Miles 12 920
Research and Application of Hot In-Place…
Sze Wai Pan, Zhang Yifu
Paperback
R3,457
Discovery Miles 34 570
Procurement Systems - A Guide to Best…
Steve Rowlinson, Peter McDermott
Hardcover
R4,504
Discovery Miles 45 040
Masonry Constructions: Mechanical Models…
Massimiliano Lucchesi, Cristina Padovani, …
Hardcover
R4,779
Discovery Miles 47 790
Building Services Engineering for…
Peter Tanner, Stephen Jones, …
Paperback
|