|
|
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Many organizations, including government institutions and agencies,
continue to increase their financial investment on information
technology (IT) solutions. Despite these investments, during the
global pandemic, employees and managers are either struggling or
unequipped to use these tools effectively and efficiently for
sustainability, competitive advantage, and decision making. Due to
global pandemics, companies must harness the power of various
digital channels such as big data analytics and artificial
intelligence to better serve their customers and business partners.
Using Information Technology Advancements to Adapt to Global
Pandemics provides insights and understanding on how companies and
organizations are using advances in IT to adapt to global pandemics
such as COVID-19. It explores how the various IT approaches can be
used for strategic purposes. Covering topics such as higher
education institutions, religious organizations, and telework, this
premier reference source is an essential resource for government
officials, business leaders and managers, industry professionals,
IT specialists, policymakers, libraries, academicians, students,
and researchers.
1m Oktober 1968 trafen Klinikchefs mit Spezialisten aus dem Bereich
der Hoch- schulen und der Computer-lndustrie in Reinhartshausen
zusammen, urn innerhalb der raschen Entwicklung der sogenannten
zweiten technischen Revolution den Trend der modernen Medizin
aufzusptiren. Ais Diskussionsgrundlage dienten ausgewillllte Refe-
rate. Ein tiberblick tiber den Verlauf dieser Tagung Ui.l3t es
niitzlich erscheinen, die Thematik einem grol3eren Kreis
zugiinglich zu machen. So haben wir uns entschlossen, die
Manuskripte der Autoren zu einem Werk zusammenzuschliel3en. Die
technischen Grundlagen der elektronischen Datenverarbeitung sollen
dabei allerdings unbertick- sichtigt bleiben. Die Durchsicht der
Beitrage mag den Eindruck erwecken, dal3 anscheinend bereits
zurtickliegende Entwicklungsphasen mit phantasievollen Forderungen
an die Zukunft inhomogen zusammengestellt seien. Aber es kommt uns
darauf an, in der bestaunens- wert en Schnelligkeit, mit der sich
eine elektronische Informationsverarbeitung - oder besser
formuliert - die moderne Wissenschaft der Informatik vollzieht, den
gegen- wartigen Zustand in der Medizin aufzuzeigen und in ihm an
den Einzelheiten die Ten- denzen darzustellen, die sich bald aus
den ursprtinglichen mechanischen Formen der Erfassung und
Verarbeitung von Daten, bald aus dem Bild der Zukunft deutlicher
ab- zeichnen. Wir hegen die Hoffnung, dal3 auf dieser Basis sich
pragende Konzeptionen fUr die Gestaltung der Zukunft ergeben. Herrn
Kollegen NORBERT EICHENSEHER danken wir fUr seine wertvolle Unter-
stiltzung bei den Korrekturen und der Abfassung des
Sachverzeichnisses.
 |
Hands-on MuleSoft Anypoint Platform Volume 3
- Implement various connectors including Database, File, SOAP, Email, VM, JMS, AMQP, Scripting, SFTP, LDAP, Java and ObjectStore
(Paperback)
Nanda Nachimuthu
|
R954
Discovery Miles 9 540
|
Ships in 18 - 22 working days
|
|
|
Als Stahl bezeichnet man heute alle Eisenlegierungen - mit Ausnahme
der nicht schmiedbaren hochkohlenstoffhaltigen Gu sorten wie
Grauguli, Hartguf und Ternperguf - ohne Riicksichr auf ihre
Eigenschaften. Friiher wurde als wesentliches Merkmal des Stahles
die Hartbarkeit angesehen. Es gibt aber eine ganze Reihe von
Stahlen, die sich nicht harten lassen, die durch das Abschrecken
aus hohen Temperaturen im Gegenteil sogar weicher, zaher werden.
Edelstdble werden vielfach solche Stahle genannt, die au er mit
Kohlenstoff auch noch mit anderen Grundstoffen, z. B. mit Chrom,
Nickel, Wolfram, Vanadin usw. legiert sind. Diese Begriffsbestim-
mung ist jedoch nicht erschopfend und auch anfechtbar, Denn man
wird einen reinen Kohlenstoffstahl, der sorgfaltig erzeugt und auf
dem ganzen Wege der Herstellung - vom Gu bis zum Versand - immer
wieder gewissenhaft gepriift worden ist, zweifellos auch zu den
Edelstahlen rechnen miissen. Andererseits enthalten manchmal
Massenstahle - auch als unbeabsichtigte Verunreinigungen - ge-
wisse Mengen von Legierungselementen. Das Richtige wird man
treffen, wenn man die bei den grofsen Hiittenwerken in grofien
Mengen erzeugten billigen Stahle als .Mas- senstahle bezeichnet,
die von einem Edelstahlwerk mit Sorgfalt und unter scharfster
Kontrolle hergestellten Stahle dagegen als Edelstahle. Die billigen
Massenstahle werden meistens nach Festigkeit ver- kauft, die
Edelstahle dagegen nach dem Verwendungszweck und unter einer
Markenbezeichnung.
Quickly build and deploy massive data pipelines and improve
productivity using Azure Databricks Key Features Get to grips with
the distributed training and deployment of machine learning and
deep learning models Learn how ETLs are integrated with Azure Data
Factory and Delta Lake Explore deep learning and machine learning
models in a distributed computing infrastructure Book
DescriptionMicrosoft Azure Databricks helps you to harness the
power of distributed computing and apply it to create robust data
pipelines, along with training and deploying machine learning and
deep learning models. Databricks' advanced features enable
developers to process, transform, and explore data. Distributed
Data Systems with Azure Databricks will help you to put your
knowledge of Databricks to work to create big data pipelines. The
book provides a hands-on approach to implementing Azure Databricks
and its associated methodologies that will make you productive in
no time. Complete with detailed explanations of essential concepts,
practical examples, and self-assessment questions, you'll begin
with a quick introduction to Databricks core functionalities,
before performing distributed model training and inference using
TensorFlow and Spark MLlib. As you advance, you'll explore MLflow
Model Serving on Azure Databricks and implement distributed
training pipelines using HorovodRunner in Databricks. Finally,
you'll discover how to transform, use, and obtain insights from
massive amounts of data to train predictive models and create
entire fully working data pipelines. By the end of this MS Azure
book, you'll have gained a solid understanding of how to work with
Databricks to create and manage an entire big data pipeline. What
you will learn Create ETLs for big data in Azure Databricks Train,
manage, and deploy machine learning and deep learning models
Integrate Databricks with Azure Data Factory for extract,
transform, load (ETL) pipeline creation Discover how to use Horovod
for distributed deep learning Find out how to use Delta Engine to
query and process data from Delta Lake Understand how to use Data
Factory in combination with Databricks Use Structured Streaming in
a production-like environment Who this book is forThis book is for
software engineers, machine learning engineers, data scientists,
and data engineers who are new to Azure Databricks and want to
build high-quality data pipelines without worrying about
infrastructure. Knowledge of Azure Databricks basics is required to
learn the concepts covered in this book more effectively. A basic
understanding of machine learning concepts and beginner-level
Python programming knowledge is also recommended.
Learn the fundamentals of data science with Python by analyzing
real datasets and solving problems using pandas Key Features *
Learn how to apply data retrieval, transformation, visualization,
and modeling techniques using pandas * Become highly efficient in
unlocking deeper insights from your data, including databases, web
data, and more * Build your experience and confidence with hands-on
exercises and activities Book Description The Pandas Workshop will
teach you how to be more productive with data and generate real
business insights to inform your decision-making. You will be
guided through real-world data science problems and shown how to
apply key techniques in the context of realistic examples and
exercises. Engaging activities will then challenge you to apply
your new skills in a way that prepares you for real data science
projects. You'll see how experienced data scientists tackle a wide
range of problems using data analysis with pandas. Unlike other
Python books, which focus on theory and spend too long on dry,
technical explanations, this workshop is designed to quickly get
you to write clean code and build your understanding through
hands-on practice. As you work through this Python pandas book,
you'll tackle various real-world scenarios, such as using an air
quality dataset to understand the pattern of nitrogen dioxide
emissions in a city, as well as analyzing transportation data to
improve bus transportation services. By the end of this data
analytics book, you'll have the knowledge, skills, and confidence
you need to solve your own challenging data science problems with
pandas. What you will learn * Access and load data from different
sources using pandas * Work with a range of data types and
structures to understand your data * Perform data transformation to
prepare it for analysis * Use Matplotlib for data visualization to
create a variety of plots * Create data models to find
relationships and test hypotheses * Manipulate time-series data to
perform date-time calculations * Optimize your code to ensure more
efficient business data analysis Who This Book Is For This data
analysis book is for anyone with prior experience working with the
Python programming language who wants to learn the fundamentals of
data analysis with pandas. Previous knowledge of pandas is not
necessary.
In dem Standardwerk der Informationsverarbeitung werden nicht
nur die elektroakustischen und nachrichtentechnischen Grundlagen
dargestellt, auch die Sprache als menschliche Kommunikationsform
wird aus linguistischer und physiologischer Perspektive
beschrieben. Berucksichtigt wird dabei neben der Theorie stets die
Anwendung auf dem neuesten Stand der Technik. Die 2.Auflage bietet
neue Abschnitte zu den Grundzugen der Signalanalyse und zu
Sprachdialogsystemen. Audiobeispiele und multimediale
Vortragselemente zum Download auf extras.springer.com.
Oberlegungen iiber die Automatisierung der Verwaltungstatigkeit in
indu striellen Unternehmungen lie en vermuten, daB die
verschiedenartigen ein zelnen Arbeiten auf eine gleichartige
Grundfunktion zuriickgefiihrt werden konnen. Zu dieser
Fragestellung gab Herr Professor Dr. Dr. Beste dankens werterweise
die Anregung, die Untersuchung in der vorliegenden allgemei nen
Fassung durchzufiihren. Der Verfasser hat sich bemiiht, in
mehrjahriger praktischer Tatigkeit die dargestellten theoretischen
Erkenntnisse aus den in der industriellen Praxis vorgefundenen
Gegebenheiten heraus zu entwickeln. Bei der Durchsprache einzelner
Probleme erhielt der Verfasser dariiber hin aus von Herrn Professor
Dr. Dr. Beste und Herrn Professor Dr. von Kortz fleisch wertvolle
Anregungen, fUr die er auch an dieser Stelle seinen beson deren
Dank aussprechen mochte. Die Arbeit wurde im Rahmen des
Industrieseminars der Universitat Koln angefertigt. Essen, den 1.
November 1962 INHALT Seite 5 Vorwort I. Begriffe und Bereich einer
betriebswirtschaftlichen Untersuchung uber die Information in der
industriellen Unternehmung . . . . . . . 9 A. Unterschiedliche
Produktivit1it bei der Materialverarbeitung und der
Informationsverarbeitung . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 10 B. Zum Wesen der Information als
Tatigkeitsgegenstand in der industriellen Unternehmung und zur
Kommunikation . . . . . . . 12 C. Bereich und Ziele der
Untersuchung . . . . . . . . . . . . . . . . . . . . . . . . 14 II.
Die Grundbausteine der Information und ihrer Verarbeitung . . . 17
A. Die elementare Struktur der Information . . . . . . . . . . . .
. . . . . . . . 17 1. Der formale Gehalt der Information . . . . .
. . . . . . . . . . . . . . . . . . 18 2. Der informative Gehalt
cler Information . . . . . . . . . . . . . . . . . . . . 23 3. Die
betriebswirtschaftliche MaBeinheit der Information . . . . . . . 26
B. Die elementaren Kommunikationswege . . . . . . . . . . . . . . .
. . . . . . . 28 1. Die vertikale und die horizontale Anordnung der
Kommunikationswege . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 28 2. Das geschlossene Kommunikationssystem
als grundsatzliche or- nisatorische Struktur . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 32 C. Die
elementaren Verarbeitungsvorgange . . . . . . . . . . . . . . . . .
. . . ."
Die Absicht, ein Buch iiber Programmieren von Ziffernrechenanlagen
zu schreiben, entstand auf Grund einer Vorlesung gleichen Titels,
die ich seit nunmehr sieben Jahren an der Technischen Hochschule
Wien halte. Ich hatte dabei bemerkt, daB das Interesse fiir die
Programmierung von Ziffernrechnern immer weitere Kreise zieht und
daB es moglich ist, dieses Interesse aus einem einheitlichen
Gesichtswinkel zu befriedigen. Der Zugang zur Kenntnis des
Programmierens erfolgt heute iiblicher- weise mit Hille der
Mathematischen Verfahrenstechnik oder von seiten der
Administrativen Automation, oder schlieBlich iiber die mit tech-
nischen Einzelheiten vermengte Beschreibung spezieller Maschinen.
Ich bin nun der Meinung, daB man ein Buch iiber Programmieren
schreiben kann, ohne auf Einzelheiten der Mathematischen
Verfahrenstechnik und der Biiroautomation oder auf technische
Eigenschaften spezieller Ma- schinen eingehen zu miissen, und ohne
damit jewells einem Tell der Leser das Verstandnis zu erschweren.
Was nach Fortlassung der ge- nannten Gebiete bleibt, ist nicht ein
trockener, unverstandlicher Rest, sondern der Inbegriff aller fiir
das Programmieren wesentlichen Prin- zipien. Sowohl der
Naturwissenschaftler als auch der Verwaltungsfach- mann, der diese
Prinzipien erfaBt hat, wird jederzeit in der Lage sein, sie seinen
besonderen Aufgaben dienstbar zu machen. Kapitel A solI zeigen,
welchen Platz der Rechenautomat unter den technischen
Errungenschaften einnimmt und wie er dorthin gelangt ist.
Besonderes Anliegen ist mir hier der geschichtliche Uberblick, well
einer- seits die deutschsprachigen Biicher auf diesem Gebiet kaum
historische Angaben enthalten und andererseits die
anglo-amerikanische Literatur die kontinentaleuropaische
Entwicklung iibergeht. - Kapitel B enthalt die Beschreibung einer
gedachten Maschine TElCO in allen Einzelheiten.
Take your first steps to becoming a fully qualified data analyst by
learning how to explore complex datasets Key Features Master each
concept through practical exercises and activities Discover various
statistical techniques to analyze your data Implement everything
you've learned on a real-world case study to uncover valuable
insights Book DescriptionEvery day, businesses operate around the
clock, and a huge amount of data is generated at a rapid pace. This
book helps you analyze this data and identify key patterns and
behaviors that can help you and your business understand your
customers at a deep, fundamental level. SQL for Data Analytics,
Third Edition is a great way to get started with data analysis,
showing how to effectively sort and process information from raw
data, even without any prior experience. You will begin by learning
how to form hypotheses and generate descriptive statistics that can
provide key insights into your existing data. As you progress, you
will learn how to write SQL queries to aggregate, calculate, and
combine SQL data from sources outside of your current dataset. You
will also discover how to work with advanced data types, like JSON.
By exploring advanced techniques, such as geospatial analysis and
text analysis, you will be able to understand your business at a
deeper level. Finally, the book lets you in on the secret to
getting information faster and more effectively by using advanced
techniques like profiling and automation. By the end of this book,
you will be proficient in the efficient application of SQL
techniques in everyday business scenarios and looking at data with
the critical eye of analytics professional. What you will learn Use
SQL to clean, prepare, and combine different datasets Aggregate
basic statistics using GROUP BY clauses Perform advanced
statistical calculations using a WINDOW function Import data into a
database to combine with other tables Export SQL query results into
various sources Analyze special data types in SQL, including
geospatial, date/time, and JSON data Optimize queries and automate
tasks Think about data problems and find answers using SQL Who this
book is forIf you're a database engineer looking to transition into
analytics or a backend engineer who wants to develop a deeper
understanding of production data and gain practical SQL knowledge,
you will find this book useful. This book is also ideal for data
scientists or business analysts who want to improve their data
analytics skills using SQL. Basic familiarity with SQL (such as
basic SELECT, WHERE, and GROUP BY clauses) as well as a good
understanding of linear algebra, statistics, and PostgreSQL 14 are
necessary to make the most of this SQL data analytics book.
A comprehensive introduction to help you get up and running with
creating interactive dashboards to visualize and monitor
time-series data in no time Key Features Install, set up, and
configure Grafana for real-time data analysis and visualization
Visualize and monitor data using data sources such as InfluxDB,
Prometheus, and Elasticsearch Explore Grafana's multi-cloud support
with Microsoft Azure, Amazon CloudWatch, and Google Stackdriver
Book DescriptionGrafana is an open-source analytical platform used
to analyze and monitoring time-series data. This beginner's guide
will help you get to grips with Grafana's new features for
querying, visualizing, and exploring metrics and logs no matter
where they are stored. The book begins by showing you how to
install and set up the Grafana server. You'll explore the working
mechanism of various components of the Grafana interface along with
its security features, and learn how to visualize and monitor data
using, InfluxDB, Prometheus, Logstash, and Elasticsearch. This
Grafana book covers the advanced features of the Graph panel and
shows you how Stat, Table, Bar Gauge, and Text are used. You'll
build dynamic dashboards to perform end-to-end analytics and label
and organize dashboards into folders to make them easier to find.
As you progress, the book delves into the administrative aspects of
Grafana by creating alerts, setting permissions for teams, and
implementing user authentication. Along with exploring Grafana's
multi-cloud monitoring support, you'll also learn about Grafana
Loki, which is a backend logger for users running Prometheus and
Kubernetes. By the end of this book, you'll have gained all the
knowledge you need to start building interactive dashboards. What
you will learn Find out how to visualize data using Grafana
Understand how to work with the major components of the Graph panel
Explore mixed data sources, query inspector, and time interval
settings Discover advanced dashboard features such as annotations,
templating with variables, dashboard linking, and dashboard sharing
techniques Connect user authentication to Google, GitHub, and a
variety of external services Find out how Grafana can provide
monitoring support for cloud service infrastructures Who this book
is forThis book is for business intelligence developers, business
analysts, data analysts, and anyone interested in performing
time-series data analysis and monitoring using Grafana. Those
looking to create and share interactive dashboards or looking to
get up to speed with the latest features of Grafana will also find
this book useful. Although no prior knowledge of Grafana is
required, basic knowledge of data visualization and some experience
in Python programming will help you understand the concepts covered
in the book.
Plan, design, develop, and manage robust Power BI solutions to
generate meaningful insights and make data-driven decisions.
Purchase of the print or Kindle book includes a free eBook in the
PDF format. Key Features Master the latest dashboarding and
reporting features of Microsoft Power BI Combine data from multiple
sources, create stunning visualizations and publish Power BI apps
to thousands of users Get the most out of Microsoft Power BI with
real-world use cases and examples Book DescriptionMastering
Microsoft Power BI, Second Edition, provides an advanced
understanding of Power BI to get the most out of your data and
maximize business intelligence. This updated edition walks through
each essential phase and component of Power BI, and explores the
latest, most impactful Power BI features. Using best practices and
working code examples, you will connect to data sources, shape and
enhance source data, and develop analytical data models. You will
also learn how to apply custom visuals, implement new DAX commands
and paginated SSRS-style reports, manage application workspaces and
metadata, and understand how content can be staged and securely
distributed via Power BI apps. Furthermore, you will explore top
report and interactive dashboard design practices using features
such as bookmarks and the Power KPI visual, alongside the latest
capabilities of Power BI mobile applications and self-service BI
techniques. Additionally, important management and administration
topics are covered, including application lifecycle management via
Power BI pipelines, the on-premises data gateway, and Power BI
Premium capacity. By the end of this Power BI book, you will be
confident in creating sustainable and impactful charts, tables,
reports, and dashboards with any kind of data using Microsoft Power
BI. What you will learn Build efficient data retrieval and
transformation processes with the Power Query M language and
dataflows Design scalable, user-friendly DirectQuery, import, and
composite data models Create basic and advanced DAX measures Add
ArcGIS Maps to create interesting data stories Build pixel-perfect
paginated reports Discover the capabilities of Power BI mobile
applications Manage and monitor a Power BI environment as a Power
BI administrator Scale up a Power BI solution for an enterprise via
Power BI Premium capacity Who this book is forBusiness Intelligence
professionals and intermediate Power BI users looking to master
Power BI for all their data visualization and dashboarding needs
will find this book useful. An understanding of basic BI concepts
is required and some familiarity with Microsoft Power BI will be
helpful to make the most out of this book.
Build a continuously learning and adapting organization that can
extract increasing levels of business, customer and operational
value from the amalgamation of data and advanced analytics such as
AI and Machine Learning Key Features Master the Big Data Business
Model Maturity Index methodology to transition to a value-driven
organizational mindset Acquire implementable knowledge on digital
transformation through 8 practical laws Explore the economics
behind digital assets (data and analytics) that appreciate in value
when constructed and deployed correctly Book DescriptionIn today's
digital era, every organization has data, but just possessing
enormous amounts of data is not a sufficient market discriminator.
The Economics of Data, Analytics, and Digital Transformation aims
to provide actionable insights into the real market discriminators,
including an organization's data-fueled analytics products that
inspire innovation, deliver insights, help make practical
decisions, generate value, and produce mission success for the
enterprise. The book begins by first building your mindset to be
value-driven and introducing the Big Data Business Model Maturity
Index, its maturity index phases, and how to navigate the index.
You will explore value engineering, where you will learn how to
identify key business initiatives, stakeholders, advanced
analytics, data sources, and instrumentation strategies that are
essential to data science success. The book will help you
accelerate and optimize your company's operations through AI and
machine learning. By the end of the book, you will have the tools
and techniques to drive your organization's digital transformation.
Here are a few words from Dr. Kirk Borne, Data Scientist and
Executive Advisor at Booz Allen Hamilton, about the book: Data
analytics should first and foremost be about action and value.
Consequently, the great value of this book is that it seeks to be
actionable. It offers a dynamic progression of purpose-driven
ignition points that you can act upon. What you will learn Train
your organization to transition from being data-driven to being
value-driven Navigate and master the big data business model
maturity index Learn a methodology for determining the economic
value of your data and analytics Understand how AI and machine
learning can create analytics assets that appreciate in value the
more that they are used Become aware of digital transformation
misconceptions and pitfalls Create empowered and dynamic teams that
fuel your organization's digital transformation Who this book is
forThis book is designed to benefit everyone from students who
aspire to study the economic fundamentals behind data and digital
transformation to established business leaders and professionals
who want to learn how to leverage data and analytics to accelerate
their business careers.
Vehicular traffic congestion and accidents remain universal issues
in today's world. Due to the continued growth in the use of
vehicles, optimizing traffic management operations is an immense
challenge. To reduce the number of traffic accidents, improve the
performance of transportation systems, enhance road safety, and
protect the environment, vehicular ad-hoc networks have been
introduced. Current developments in wireless communication,
computing paradigms, big data, and cloud computing enable the
enhancement of these networks, equipped with wireless communication
capabilities and high-performance processing tools. Cloud-Based Big
Data Analytics in Vehicular Ad-Hoc Networks is a pivotal reference
source that provides vital research on cloud and data analytic
applications in intelligent transportation systems. While
highlighting topics such as location routing, accident detection,
and data warehousing, this publication addresses future challenges
in vehicular ad-hoc networks and presents viable solutions. This
book is ideally designed for researchers, computer scientists,
engineers, automobile industry professionals, IT practitioners,
academicians, and students seeking current research on cloud
computing models in vehicular networks.
Learn Azure's cloud capabilities with the help of this introductory
guide to employing Azure for your cloud infrastructure needs. Key
Features Get a clear overview of Azure's capabilities and benefits,
and learn how to get started efficiently Develop the ability to opt
for cloud architecture and design that best fits your organization
Leverage Azure opportunities for cost savings and optimization Book
DescriptionMicrosoft Azure is a powerful cloud computing platform
that offers a multitude of services and capabilities for
organizations of any size moving to a cloud strategy. Azure
Strategy and Implementation Guide Third Edition encapsulates the
entire spectrum of measures involved in Azure deployment that
includes understanding Azure fundamentals, choosing a suitable
cloud architecture, building on design principles, becoming
familiar with Azure DevOps, and learning best practices for
optimization and management. The book begins by introducing you to
the Azure cloud platform and demonstrating the substantial scope of
digital transformation and innovation that can be achieved by
leveraging Azure's capabilities. The guide further acquaints you
with practical insights on application modernization, Azure
Infrastructure as a Service (IaaS) deployment, infrastructure
management, key application architectures, best practices of Azure
DevOps, and Azure automation. By the end of this book, you will be
proficient in driving Azure operations right from the planning and
cloud migration stage to cost management and troubleshooting. What
you will learn Deploy and run Azure infrastructure services Carry
out detailed planning for migrating applications to the cloud with
Azure Move underlying code class structure into a serverless model
Use a gateway to isolate your services and applications Define
roles and responsibilities in DevOps Implement release &
deployment coordination and automation Who this book is forAzure
Strategy and Implementation Guide Third Edition is designed to
benefit Azure architects, cloud solution architects, Azure
developers, Azure administrators, and anyone who wants to develop
an expertise in operating and administering the Azure cloud. A
basic familiarity with operating systems and databases will help
you grasp the concepts covered in this book.
Design, secure, and protect the privacy of edge analytics
applications using platforms and tools such as Microsoft's Azure
IoT Edge, MicroPython, and Open Source Computer Vision (OpenCV) Key
Features Become well-versed with best practices for implementing
automated analytical computations Discover real-world examples to
extend cloud intelligence Develop your skills by understanding edge
analytics and applying it to research activities Book
DescriptionEdge analytics has gained attention as the IoT model for
connected devices rises in popularity. This guide will give you
insights into edge analytics as a data analysis model, and help you
understand why it's gaining momentum. You'll begin with the key
concepts and components used in an edge analytics app. Moving
ahead, you'll delve into communication protocols to understand how
sensors send their data to computers or microcontrollers. Next, the
book will demonstrate how to design modern edge analytics apps that
take advantage of the processing power of modern single-board
computers and microcontrollers. Later, you'll explore Microsoft
Azure IoT Edge, MicroPython, and the OpenCV visual recognition
library. As you progress, you'll cover techniques for processing AI
functionalities from the server side to the sensory side of IoT.
You'll even get hands-on with designing a smart doorbell system
using the technologies you've learned. To remove vulnerabilities in
the overall edge analytics architecture, you'll discover ways to
overcome security and privacy challenges. Finally, you'll use tools
to audit and perform real-time monitoring of incoming data and
generate alerts for the infrastructure. By the end of this book,
you'll have learned how to use edge analytics programming
techniques and be able to implement automated analytical
computations. What you will learn Discover the key concepts and
architectures used with edge analytics Understand how to use
long-distance communication protocols for edge analytics Deploy
Microsoft Azure IoT Edge to a Raspberry Pi Create Node-RED
dashboards with MQTT and Text to Speech (TTS) Use MicroPython for
developing edge analytics apps Explore various machine learning
techniques and discover how machine learning is related to edge
analytics Use camera and vision recognition algorithms on the
sensory side to design an edge analytics app Monitor and audit edge
analytics apps Who this book is forIf you are a data analyst, data
architect, or data scientist who is interested in learning and
practicing advanced automated analytical computations, then this
book is for you. You will also find this book useful if you're
looking to learn edge analytics from scratch. Basic knowledge of
data analytics concepts is assumed to get the most out of this
book.
Solve real-world data problems and create data-driven workflows for
easy data movement and processing at scale with Azure Data Factory
Key Features Learn how to load and transform data from various
sources, both on-premises and on cloud Use Azure Data Factory's
visual environment to build and manage hybrid ETL pipelines
Discover how to prepare, transform, process, and enrich data to
generate key insights Book DescriptionAzure Data Factory (ADF) is a
modern data integration tool available on Microsoft Azure. This
Azure Data Factory Cookbook helps you get up and running by showing
you how to create and execute your first job in ADF. You'll learn
how to branch and chain activities, create custom activities, and
schedule pipelines. This book will help you to discover the
benefits of cloud data warehousing, Azure Synapse Analytics, and
Azure Data Lake Gen2 Storage, which are frequently used for big
data analytics. With practical recipes, you'll learn how to
actively engage with analytical tools from Azure Data Services and
leverage your on-premise infrastructure with cloud-native tools to
get relevant business insights. As you advance, you'll be able to
integrate the most commonly used Azure Services into ADF and
understand how Azure services can be useful in designing ETL
pipelines. The book will take you through the common errors that
you may encounter while working with ADF and show you how to use
the Azure portal to monitor pipelines. You'll also understand error
messages and resolve problems in connectors and data flows with the
debugging capabilities of ADF. By the end of this book, you'll be
able to use ADF as the main ETL and orchestration tool for your
data warehouse or data platform projects. What you will learn
Create an orchestration and transformation job in ADF Develop,
execute, and monitor data flows using Azure Synapse Create big data
pipelines using Azure Data Lake and ADF Build a machine learning
app with Apache Spark and ADF Migrate on-premises SSIS jobs to ADF
Integrate ADF with commonly used Azure services such as Azure ML,
Azure Logic Apps, and Azure Functions Run big data compute jobs
within HDInsight and Azure Databricks Copy data from AWS S3 and
Google Cloud Storage to Azure Storage using ADF's built-in
connectors Who this book is forThis book is for ETL developers,
data warehouse and ETL architects, software professionals, and
anyone who wants to learn about the common and not-so-common
challenges faced while developing traditional and hybrid ETL
solutions using Microsoft's Azure Data Factory. You'll also find
this book useful if you are looking for recipes to improve or
enhance your existing ETL pipelines. Basic knowledge of data
warehousing is expected.
|
|