![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Solve real-world business problems by learning how to create common industry key performance indicators and other calculations using DAX within Microsoft products such as Power BI, SQL Server, and Excel. Key Features Learn to write sophisticated DAX queries to solve business intelligence and data analytics challenges Handle performance issues and optimization within the data model, DAX calculations and more Solve business issues with Microsoft Excel, Power BI, and SQL Server using DAX queries Book DescriptionDAX provides an extra edge by extracting key information from the data that is already present in your model. Filled with examples of practical, real-world calculations geared toward business metrics and key performance indicators, this cookbook features solutions that you can apply for your own business analysis needs. You'll learn to write various DAX expressions and functions to understand how DAX queries work. The book also covers sections on dates, time, and duration to help you deal with working days, time zones, and shifts. You'll then discover how to manipulate text and numbers to create dynamic titles and ranks, and deal with measure totals. Later, you'll explore common business metrics for finance, customers, employees, and projects. The book will also show you how to implement common industry metrics such as days of supply, mean time between failure, order cycle time and overall equipment effectiveness. In the concluding chapters, you'll learn to apply statistical formulas for covariance, kurtosis, and skewness. Finally, you'll explore advanced DAX patterns for interpolation, inverse aggregators, inverse slicers, and even forecasting with a deseasonalized correlation coefficient. By the end of this book, you'll have the skills you need to use DAX's functionality and flexibility in business intelligence and data analytics. What you will learn Understand how to create common calculations for dates, time, and duration Create key performance indicators (KPIs) and other business calculations Develop general DAX calculations that deal with text and numbers Discover new ideas and time-saving techniques for better calculations and models Perform advanced DAX calculations for solving statistical measures and other mathematical formulas Handle errors in DAX and learn how to debug DAX calculations Understand how to optimize your data models Who this book is forBusiness users, BI developers, data analysts, and SQL users who are looking for solutions to the challenges faced while solving analytical operations using DAX techniques and patterns will find this book useful. Basic knowledge of the DAX language and Microsoft services is mandatory.
Tragwerke, die besonderen Belastungen oder au13ergewohnlichen Kraft- einwirkungen ausgesetzt sind, durch die Kiihnheit ihrer Konstruktion bzw. eine nicht alltagliche Zweckbestimmung sich auszeichnen, endlich solche, die aus neuartigem, noch nicht geniigend durchforschtem Material bestehen, werden unmittelbar vor Dbergabe an den Betrieb einer amtlichen Belastungsprobe unterzogen, die in bestimmten Zeitabschnitten wiederholt wird (periodische Erprobung). In Verbindung mit den Ergebnissen einer plangema13en Dberpriifung stehen uns damit ausreichende Anhalte zur Abgabe eines zutreffenden Urteiles iiber die Giite des in Frage stehenden Bauwerkes zur Verfiigung. Die periodischen Deformationsmessungen an bereits im Betriebe stehenden Tragwerken geben wieder Aufschlu13 iiber zwischenzeitlich etwa entstandene, optisch nur schwer wahmehmbare Mangel an lebenswichtigen Traggliedern, mit deren Bestehen immer dann zu rechnen ist, wenn im Vergleiche mit den Ergebnissen voran- gegangener Proben unzulassig gro13e Deformationen auftreten. Die Wichtigkeit und Notwendigkeit solcher diagnostisch unentbehrlichen Messungen wurde schon friih erkannt. Fehldiagnosen sind allerdings nicht ausgeschlossen, besonders wenn die verschiedenen Faktoren, die das Me13ergebnis ma13geblich beeinflussen, nicht richtig gedeutet und gegeneinander abgeschatzt werden. Hier setzt die ebenso schwierige wie verantwortungsvolle Tatigkeit des mit der Priifung und Erprobung betrauten Ingenieurs ein, der daher nicht nur iiber griindliches Wissen und reiche Erfahrung, sondern dariiber hinaus auch liber gewisse technisch- diagnostische F iihigkeiten verfligen mli13te. Andernfalls besteht, wie die Erfahrung lehrt, die nicht llnbegriindete Befiirchtung, daB z. B. Rekonstruktionen angeordnet werden, die, abgesehen von den Kosten, zumindest abwegig, wenn nicht gar system widrig sein konnen.
A practical guide to implementing a scalable and fast state-of-the-art analytical data estate Key Features Store and analyze data with enterprise-grade security and auditing Perform batch, streaming, and interactive analytics to optimize your big data solutions with ease Develop and run parallel data processing programs using real-world enterprise scenarios Book DescriptionAzure Data Lake, the modern data warehouse architecture, and related data services on Azure enable organizations to build their own customized analytical platform to fit any analytical requirements in terms of volume, speed, and quality. This book is your guide to learning all the features and capabilities of Azure data services for storing, processing, and analyzing data (structured, unstructured, and semi-structured) of any size. You will explore key techniques for ingesting and storing data and perform batch, streaming, and interactive analytics. The book also shows you how to overcome various challenges and complexities relating to productivity and scaling. Next, you will be able to develop and run massive data workloads to perform different actions. Using a cloud-based big data-modern data warehouse-analytics setup, you will also be able to build secure, scalable data estates for enterprises. Finally, you will not only learn how to develop a data warehouse but also understand how to create enterprise-grade security and auditing big data programs. By the end of this Azure book, you will have learned how to develop a powerful and efficient analytical platform to meet enterprise needs. What you will learn Implement data governance with Azure services Use integrated monitoring in the Azure Portal and integrate Azure Data Lake Storage into the Azure Monitor Explore the serverless feature for ad-hoc data discovery, logical data warehousing, and data wrangling Implement networking with Synapse Analytics and Spark pools Create and run Spark jobs with Databricks clusters Implement streaming using Azure Functions, a serverless runtime environment on Azure Explore the predefined ML services in Azure and use them in your app Who this book is forThis book is for data architects, ETL developers, or anyone who wants to get well-versed with Azure data services to implement an analytical data estate for their enterprise. The book will also appeal to data scientists and data analysts who want to explore all the capabilities of Azure data services, which can be used to store, process, and analyze any kind of data. A beginner-level understanding of data analysis and streaming will be required.
Discover the true power of DAX and build advanced DAX solutions for practical business scenarios Key Features Solve complex business problems within Microsoft BI tools including Power BI, SQL Server, and Excel Develop a conceptual understanding of critical business data modeling principles Learn the subtleties of Power BI data visualizations, evaluation context, context transition, and filtering Book DescriptionThis book helps business analysts generate powerful and sophisticated analyses from their data using DAX and get the most out of Microsoft Business Intelligence tools. Extreme DAX will first teach you the principles of business intelligence, good model design, and how DAX fits into it all. Then, you'll launch into detailed examples of DAX in real-world business scenarios such as inventory calculations, forecasting, intercompany business, and data security. At each step, senior DAX experts will walk you through the subtleties involved in working with Power BI models and common mistakes to look out for as you build advanced data aggregations. You'll deepen your understanding of DAX functions, filters, and measures, and how and when they can be used to derive effective insights. You'll also be provided with PBIX files for each chapter, so that you can follow along and explore in your own time. What you will learn Understand data modeling concepts and structures before you start working with DAX Grasp how relationships in Power BI models are different from those in RDBMSes Secure aggregation levels, attributes, and hierarchies using PATH functions and row-level security Get to grips with the crucial concept of context Apply advanced context and filtering functions including TREATAS, GENERATE, and SUMMARIZE Explore dynamically changing visualizations with helper tables and dynamic labels and axes Work with week-based calendars and understand standard time-intelligence Evaluate investments intelligently with the XNPV and XIRR financial DAX functions Who this book is forExtreme DAX is written for analysts with a working knowledge of DAX in Power BI or other Microsoft analytics tools. It will help you upgrade your knowledge and work with analytical models more effectively, so you'll need practical experience with DAX before you can get started.
Big Data Analytics and Its Impact on Basin Water Agreements and International Water Law represents the state of the art when it comes to the use of disruptive technologies in the transboundary water context and its impact on international water law. Indeed, the case study provided in this manuscript which represents the most relevant example where big data is being used in the transboundary water context highlights this reality. The readers will understand current and also future potential impact of big data on water resources in the general context of disruptive technologies.
Implement business intelligence (BI), data modeling, and data analytics within Microsoft products such as Power BI, SQL Server, and Excel Key Features Understand the ins and outs of DAX expressions and querying functions with the help of easy-to-follow examples Manipulate data of varying complexity and optimize BI workflows to extract key insights Create, monitor, and improve the performance of models by writing clean and robust DAX queries Book DescriptionData Analysis Expressions (DAX) is known for its ability to increase efficiency by extracting new information from data that is already present in your model. With this book, you'll learn to use DAX's functionality and flexibility in the BI and data analytics domains. You'll start by learning the basics of DAX, along with understanding the importance of good data models, and how to write efficient DAX formulas by using variables and formatting styles. You'll then explore how DAX queries work with the help of examples. The book will guide you through optimizing the BI workflow by writing powerful DAX queries. Next, you'll learn to manipulate and load data of varying complexity within Microsoft products such as Power BI, SQL Server, and Excel Power Pivot. You'll then discover how to build and extend your data models to gain additional insights, before covering progressive DAX syntax and functions to understand complex relationships in DAX. Later, you'll focus on important DAX functions, specifically those related to tables, date and time, filtering, and statistics. Finally, you'll delve into advanced topics such as how the formula and storage engines work to optimize queries. By the end of this book, you'll have gained hands-on experience in employing DAX to enhance your data models by extracting new information and gaining deeper insights. What you will learn Understand DAX, from the basics through to advanced topics, and learn to build effective data models Write and use DAX functions and expressions with the help of hands-on examples Discover how to handle errors in your DAX code, and avoid unwanted results Load data into a data model using Power BI, Excel Power Pivot, and SSAS Tabular Cover DAX functions such as date, time, and time intelligence using code examples Gain insights into data by using DAX to create new information Understand the DAX VertiPaq engine and how it can help you optimize data models Who this book is forThis book is for data analysts, business analysts, BI developers, or SQL users who want to make the best use of DAX in the BI and data analytics domain with the help of examples. Some understanding of BI concepts is mandatory to fully understand the concepts covered in the book.
Gain expert guidance on how to successfully develop machine learning models in Python and build your own unique data platforms Key Features Gain a full understanding of the model production and deployment process Build your first machine learning model in just five minutes and get a hands-on machine learning experience Understand how to deal with common challenges in data science projects Book DescriptionWhere there's data, there's insight. With so much data being generated, there is immense scope to extract meaningful information that'll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you'll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You'll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you'll get hands-on with approaches such as grid search and random search. Next, you'll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You'll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you'll have the skills to start working on data science projects confidently. By the end of this book, you'll have the skills to start working on data science projects confidently. What you will learn Explore the key differences between supervised learning and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Understand key concepts such as regression, classification, and clustering Discover advanced techniques to improve the accuracy of your model Understand how to speed up the process of adding new features Simplify your machine learning workflow for production Who this book is forThis is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going through all the mathematics behind machine learning algorithms. Basic knowledge of the Python programming language will help you easily grasp the concepts explained in this book.
Dirty data is a problem that costs businesses thousands, if not millions, every year. In organisations large and small across the globe you will hear talk of data quality issues. What you will rarely hear about is the consequences or how to fix it. Between the Spreadsheets: Classifying and Fixing Dirty Data draws on classification expert Susan Walsh's decade of experience in data classification to present a fool-proof method for cleaning and classifying your data. The book covers everything from the very basics of data classification to normalisation and taxonomies, and presents the author's proven COAT methodology, helping ensure an organisation's data is Consistent, Organised, Accurate and Trustworthy. A series of data horror stories outlines what can go wrong in managing data, and if it does, how it can be fixed. After reading this book, regardless of your level of experience, not only will you be able to work with your data more efficiently, but you will also understand the impact the work you do with it has, and how it affects the rest of the organisation. Written in an engaging and highly practical manner, Between the Spreadsheets gives readers of all levels a deep understanding of the dangers of dirty data and the confidence and skills to work more efficiently and effectively with it.
Discover how to describe your data in detail, identify data issues, and find out how to solve them using commonly used techniques and tips and tricks Key Features Get well-versed with various data cleaning techniques to reveal key insights Manipulate data of different complexities to shape them into the right form as per your business needs Clean, monitor, and validate large data volumes to diagnose problems before moving on to data analysis Book DescriptionGetting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data. By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it. What you will learn Find out how to read and analyze data from a variety of sources Produce summaries of the attributes of data frames, columns, and rows Filter data and select columns of interest that satisfy given criteria Address messy data issues, including working with dates and missing values Improve your productivity in Python pandas by using method chaining Use visualizations to gain additional insights and identify potential data issues Enhance your ability to learn what is going on in your data Build user-defined functions and classes to automate data cleaning Who this book is forThis book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data. Working knowledge of Python programming is all you need to get the most out of the book.
Get to grips with building and productionizing end-to-end big data solutions in Azure and learn best practices for working with large datasets Key Features Integrate with Azure Synapse Analytics, Cosmos DB, and Azure HDInsight Kafka Cluster to scale and analyze your projects and build pipelines Use Databricks SQL to run ad hoc queries on your data lake and create dashboards Productionize a solution using CI/CD for deploying notebooks and Azure Databricks Service to various environments Book DescriptionAzure Databricks is a unified collaborative platform for performing scalable analytics in an interactive environment. The Azure Databricks Cookbook provides recipes to get hands-on with the analytics process, including ingesting data from various batch and streaming sources and building a modern data warehouse. The book starts by teaching you how to create an Azure Databricks instance within the Azure portal, Azure CLI, and ARM templates. You'll work through clusters in Databricks and explore recipes for ingesting data from sources, including files, databases, and streaming sources such as Apache Kafka and EventHub. The book will help you explore all the features supported by Azure Databricks for building powerful end-to-end data pipelines. You'll also find out how to build a modern data warehouse by using Delta tables and Azure Synapse Analytics. Later, you'll learn how to write ad hoc queries and extract meaningful insights from the data lake by creating visualizations and dashboards with Databricks SQL. Finally, you'll deploy and productionize a data pipeline as well as deploy notebooks and Azure Databricks service using continuous integration and continuous delivery (CI/CD). By the end of this Azure book, you'll be able to use Azure Databricks to streamline different processes involved in building data-driven apps. What you will learn Read and write data from and to various Azure resources and file formats Build a modern data warehouse with Delta Tables and Azure Synapse Analytics Explore jobs, stages, and tasks and see how Spark lazy evaluation works Handle concurrent transactions and learn performance optimization in Delta tables Learn Databricks SQL and create real-time dashboards in Databricks SQL Integrate Azure DevOps for version control, deploying, and productionizing solutions with CI/CD pipelines Discover how to use RBAC and ACLs to restrict data access Build end-to-end data processing pipeline for near real-time data analytics Who this book is forThis recipe-based book is for data scientists, data engineers, big data professionals, and machine learning engineers who want to perform data analytics on their applications. Prior experience of working with Apache Spark and Azure is necessary to get the most out of this book.
Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key Features Become well-versed with the core concepts of Apache Spark and Delta Lake for building data platforms Learn how to ingest, process, and analyze data that can be later used for training machine learning models Understand how to operationalize data models in production using curated data Book DescriptionIn the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learn Discover the challenges you may face in the data engineering world Add ACID transactions to Apache Spark using Delta Lake Understand effective design strategies to build enterprise-grade data lakes Explore architectural and design patterns for building efficient data ingestion pipelines Orchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIs Automate deployment and monitoring of data pipelines in production Get to grips with securing, monitoring, and managing data pipelines models efficiently Who this book is forThis book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
Comprehensive recipes to give you valuable insights on Transformers, Reinforcement Learning, and more Key Features Deep Learning solutions from Kaggle Masters and Google Developer Experts Get to grips with the fundamentals including variables, matrices, and data sources Learn advanced techniques to make your algorithms faster and more accurate Book DescriptionThe independent recipes in Machine Learning Using TensorFlow Cookbook will teach you how to perform complex data computations and gain valuable insights into your data. Dive into recipes on training models, model evaluation, sentiment analysis, regression analysis, artificial neural networks, and deep learning - each using Google's machine learning library, TensorFlow. This cookbook covers the fundamentals of the TensorFlow library, including variables, matrices, and various data sources. You'll discover real-world implementations of Keras and TensorFlow and learn how to use estimators to train linear models and boosted trees, both for classification and regression. Explore the practical applications of a variety of deep learning architectures, such as recurrent neural networks and Transformers, and see how they can be used to solve computer vision and natural language processing (NLP) problems. With the help of this book, you will be proficient in using TensorFlow, understand deep learning from the basics, and be able to implement machine learning algorithms in real-world scenarios. What you will learn Take TensorFlow into production Implement and fine-tune Transformer models for various NLP tasks Apply reinforcement learning algorithms using the TF-Agents framework Understand linear regression techniques and use Estimators to train linear models Execute neural networks and improve predictions on tabular data Master convolutional neural networks and recurrent neural networks through practical recipes Who this book is forIf you are a data scientist or a machine learning engineer, and you want to skip detailed theoretical explanations in favor of building production-ready machine learning models using TensorFlow, this book is for you. Basic familiarity with Python, linear algebra, statistics, and machine learning is necessary to make the most out of this book.
Leverage the full potential of SAS to get unique, actionable insights from your data Key Features Build enterprise-class data solutions using SAS and become well-versed in SAS programming Work with different data structures, and run SQL queries to manipulate your data Explore essential concepts and techniques with practical examples to confidently pass the SAS certification exam Book DescriptionSAS is one of the leading enterprise tools in the world today when it comes to data management and analysis. It enables the fast and easy processing of data and helps you gain valuable business insights for effective decision-making. This book will serve as a comprehensive guide that will prepare you for the SAS certification exam. After a quick overview of the SAS architecture and components, the book will take you through the different approaches to importing and reading data from different sources using SAS. You will then cover SAS Base and 4GL, understanding data management and analysis, along with exploring SAS functions for data manipulation and transformation. Next, you'll discover SQL procedures and get up to speed on creating and validating queries. In the concluding chapters, you'll learn all about data visualization, right from creating bar charts and sample geographic maps through to assigning patterns and formats. In addition to this, the book will focus on macro programming and its advanced aspects. By the end of this book, you will be well versed in SAS programming and have the skills you need to easily handle and manage your data-related problems in SAS. What you will learn Explore a variety of SAS modules and packages for efficient data analysis Use SAS 4GL functions to manipulate, merge, sort, and transform data Gain useful insights into advanced PROC SQL options in SAS to interact with data Get to grips with SAS Macro and define your own macros to share data Discover the different graphical libraries to shape and visualize data with Apply the SAS Output Delivery System to prepare detailed reports Who this book is forBudding or experienced data professionals who want to get started with SAS will benefit from this book. Those looking to prepare for the SAS certification exam will also find this book to be a useful resource. Some understanding of basic data management concepts will help you get the most out of this book.
|
You may like...
Machine Learning and Data Analytics for…
Manikant Roy, Lovi Raj Gupta
Hardcover
R10,591
Discovery Miles 105 910
Big Data Analytics in Traffic and…
Sara Moridpour, Alireza Toran Pour, …
Hardcover
R4,097
Discovery Miles 40 970
Cross-Cultural Analysis of Image-Based…
Lisa Keller, Robert Keller, …
Hardcover
R3,285
Discovery Miles 32 850
Machine Learning for Biometrics…
Partha Pratim Sarangi, Madhumita Panda, …
Paperback
R2,570
Discovery Miles 25 700
Data Analytics for Social Microblogging…
Soumi Dutta, Asit Kumar Das, …
Paperback
R3,335
Discovery Miles 33 350
Cognitive and Soft Computing Techniques…
Akash Kumar Bhoi, Victor Hugo Costa de Albuquerque, …
Paperback
R2,583
Discovery Miles 25 830
Demystifying Graph Data Science - Graph…
Pethuru Raj, Abhishek Kumar, …
Hardcover
|