0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (60)
  • R500+ (1,226)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Databases > Data capture & analysis

Hands-On Ensemble Learning with R - A beginner's guide to combining the power of machine learning algorithms using... Hands-On Ensemble Learning with R - A beginner's guide to combining the power of machine learning algorithms using ensemble techniques (Paperback)
Prabhanjan Narayanachar Tattar
R1,190 Discovery Miles 11 900 Ships in 10 - 15 working days

Explore powerful R packages to create predictive models using ensemble methods Key Features Implement machine learning algorithms to build ensemble-efficient models Explore powerful R packages to create predictive models using ensemble methods Learn to build ensemble models on large datasets using a practical approach Book DescriptionEnsemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques - bagging, random forest, and boosting - then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models. By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples. What you will learn Carry out an essential review of re-sampling methods, bootstrap, and jackknife Explore the key ensemble methods: bagging, random forests, and boosting Use multiple algorithms to make strong predictive models Enjoy a comprehensive treatment of boosting methods Supplement methods with statistical tests, such as ROC Walk through data structures in classification, regression, survival, and time series data Use the supplied R code to implement ensemble methods Learn stacking method to combine heterogeneous machine learning models Who this book is forThis book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.

Hyperledger Cookbook - Over 40 recipes implementing the latest Hyperledger blockchain frameworks and tools (Paperback): Xun... Hyperledger Cookbook - Over 40 recipes implementing the latest Hyperledger blockchain frameworks and tools (Paperback)
Xun (Brian) Wu, ChuanFeng Zhang, Andrew Zhang
R1,048 Discovery Miles 10 480 Ships in 10 - 15 working days

Explore the entire Hyperledger blockchain family, including frameworks such as Fabric, Sawtooth, Indy, Burrow, and Iroha; and tools such as Composer, Explorer, and Caliper. Key Features Plan, design, and create a full-fledged private decentralized application using Hyperledger services Master the ins and outs of the Hyperledger network using real-world examples Packed with problem-solution-based recipes to tackle pain areas in the blockchain development cycle Book DescriptionHyperledger is an open-source project and creates private blockchain applications for a range of domains. This book will be your desk reference as you explore common and not-so-common challenges faced while building blockchain networks using Hyperledger services. We'll work through all Hyperledger platform modules to understand their services and features and build end-to-end blockchain applications using various frameworks and tools supported by Hyperledger. This book's independent, recipe-based approach (packed with real-world examples) will familiarize you with the blockchain development cycle. From modeling a business network to integrating with various tools, you will cover it all. We'll cover common and not-so-common challenges faced in the blockchain life cycle. Later, we'll delve into how we can interact with the Hyperledger Fabric blockchain, covering all the principles you need to master, such as chaincode, smart contracts, and much more. We'll also address the scalability and security issues currently faced in blockchain development. By the end of this book, you will be able to implement each recipe to plan, design, and create a full-fledged, private, decentralized application to meet organizational needs. What you will learn Create the most popular permissioned blockchain network with Fabric and Composer Build permissioned and permission-less blockchains using Sawtooth Utilize built-in Iroha asset/account management with role-based permissions Implement and run Ethereum smart contracts with Burrow Get to grips with security and scalability in Hyperledger Explore and view blockchain data using Hyperledger Explorer Produce reports containing performance indicators and benchmarks using Caliper Who this book is forThis book is for blockchain developers who want to understand how they can apply Hyperledger services in their day-to-day projects. This book uses a recipe-based approach to help you use Hyperledger to build powerful, decentralized autonomous applications. We assume the reader has a basic knowledge of the Blockchain technology and cryptography concepts

Machine Learning for Data Mining - Improve your data mining capabilities with advanced predictive modeling (Paperback): Jesus... Machine Learning for Data Mining - Improve your data mining capabilities with advanced predictive modeling (Paperback)
Jesus Salcedo
R894 Discovery Miles 8 940 Ships in 10 - 15 working days

Get efficient in performing data mining and machine learning using IBM SPSS Modeler Key Features Learn how to apply machine learning techniques in the field of data science Understand when to use different data mining techniques, how to set up different analyses, and how to interpret the results A step-by-step approach to improving model development and performance Book DescriptionMachine learning (ML) combined with data mining can give you amazing results in your data mining work by empowering you with several ways to look at data. This book will help you improve your data mining techniques by using smart modeling techniques. This book will teach you how to implement ML algorithms and techniques in your data mining work. It will enable you to pair the best algorithms with the right tools and processes. You will learn how to identify patterns and make predictions with minimal human intervention. You will build different types of ML models, such as the neural network, the Support Vector Machines (SVMs), and the Decision tree. You will see how all of these models works and what kind of data in the dataset they are suited for. You will learn how to combine the results of different models in order to improve accuracy. Topics such as removing noise and handling errors will give you an added edge in model building and optimization. By the end of this book, you will be able to build predictive models and extract information of interest from the dataset What you will learn Hone your model-building skills and create the most accurate models Understand how predictive machine learning models work Prepare your data to acquire the best possible results Combine models in order to suit the requirements of different types of data Analyze single and multiple models and understand their combined results Derive worthwhile insights from your data using histograms and graphs Who this book is forIf you are a data scientist, data analyst, and data mining professional and are keen to achieve a 30% higher salary by adding machine learning to your skillset, then this is the ideal book for you. You will learn to apply machine learning techniques to various data mining challenges. No prior knowledge of machine learning is assumed.

Art + Data - A Collection of Tableau Dashboards (hard cover) (Hardcover): Decisive Data Art + Data - A Collection of Tableau Dashboards (hard cover) (Hardcover)
Decisive Data
R866 R755 Discovery Miles 7 550 Save R111 (13%) Ships in 10 - 15 working days
fastText Quick Start Guide - Get started with Facebook's library for text representation and classification (Paperback):... fastText Quick Start Guide - Get started with Facebook's library for text representation and classification (Paperback)
Joydeep Bhattacharjee
R840 Discovery Miles 8 400 Ships in 10 - 15 working days

Perform efficient fast text representation and classification with Facebook's fastText library Key Features Introduction to Facebook's fastText library for NLP Perform efficient word representations, sentence classification, vector representation Build better, more scalable solutions for text representation and classification Book DescriptionFacebook's fastText library handles text representation and classification, used for Natural Language Processing (NLP). Most organizations have to deal with enormous amounts of text data on a daily basis, and gaining efficient data insights requires powerful NLP tools such as fastText. This book is your ideal introduction to fastText. You will learn how to create fastText models from the command line, without the need for complicated code. You will explore the algorithms that fastText is built on and how to use them for word representation and text classification. Next, you will use fastText in conjunction with other popular libraries and frameworks such as Keras, TensorFlow, and PyTorch. Finally, you will deploy fastText models to mobile devices. By the end of this book, you will have all the required knowledge to use fastText in your own applications at work or in projects. What you will learn Create models using the default command line options in fastText Understand the algorithms used in fastText to create word vectors Combine command line text transformation capabilities and the fastText library to implement a training, validation, and prediction pipeline Explore word representation and sentence classification using fastText Use Gensim and spaCy to load the vectors, transform, lemmatize, and perform other NLP tasks efficiently Develop a fastText NLP classifier using popular frameworks, such as Keras, Tensorflow, and PyTorch Who this book is forThis book is for data analysts, data scientists, and machine learning developers who want to perform efficient word representation and sentence classification using Facebook's fastText library. Basic knowledge of Python programming is required.

Practical Data Wrangling (Paperback): Allan Visochek Practical Data Wrangling (Paperback)
Allan Visochek
R879 Discovery Miles 8 790 Ships in 10 - 15 working days

Turn your noisy data into relevant, insight-ready information by leveraging the data wrangling techniques in Python and R About This Book * This easy-to-follow guide takes you through every step of the data wrangling process in the best possible way * Work with different types of datasets, and reshape the layout of your data to make it easier for analysis * Get simple examples and real-life data wrangling solutions for data pre-processing Who This Book Is For If you are a data scientist, data analyst, or a statistician who wants to learn how to wrangle your data for analysis in the best possible manner, this book is for you. As this book covers both R and Python, some understanding of them will be beneficial. What You Will Learn * Read a csv file into python and R, and print out some statistics on the data * Gain knowledge of the data formats and programming structures involved in retrieving API data * Make effective use of regular expressions in the data wrangling process * Explore the tools and packages available to prepare numerical data for analysis * Find out how to have better control over manipulating the structure of the data * Create a dexterity to programmatically read, audit, correct, and shape data * Write and complete programs to take in, format, and output data sets In Detail Around 80% of time in data analysis is spent on cleaning and preparing data for analysis. This is, however, an important task, and is a prerequisite to the rest of the data analysis workflow, including visualization, analysis and reporting. Python and R are considered a popular choice of tool for data analysis, and have packages that can be best used to manipulate different kinds of data, as per your requirements. This book will show you the different data wrangling techniques, and how you can leverage the power of Python and R packages to implement them. You'll start by understanding the data wrangling process and get a solid foundation to work with different types of data. You'll work with different data structures and acquire and parse data from various locations. You'll also see how to reshape the layout of data and manipulate, summarize, and join data sets. Finally, we conclude with a quick primer on accessing and processing data from databases, conducting data exploration, and storing and retrieving data quickly using databases. The book includes practical examples on each of these points using simple and real-world data sets to give you an easier understanding. By the end of the book, you'll have a thorough understanding of all the data wrangling concepts and how to implement them in the best possible way. Style and approach This is a practical book on data wrangling designed to give you an insight into the practical application of data wrangling. It takes you through complex concepts and tasks in an accessible way, featuring information on a wide range of data wrangling techniques with Python and R.

PySpark Cookbook - Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python... PySpark Cookbook - Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python (Paperback)
Denny Lee, Tomasz Drabas
R1,168 Discovery Miles 11 680 Ships in 10 - 15 working days

Combine the power of Apache Spark and Python to build effective big data applications Key Features Perform effective data processing, machine learning, and analytics using PySpark Overcome challenges in developing and deploying Spark solutions using Python Explore recipes for efficiently combining Python and Apache Spark to process data Book DescriptionApache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem. You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications. What you will learn Configure a local instance of PySpark in a virtual environment Install and configure Jupyter in local and multi-node environments Create DataFrames from JSON and a dictionary using pyspark.sql Explore regression and clustering models available in the ML module Use DataFrames to transform data used for modeling Connect to PubNub and perform aggregations on streams Who this book is forThe PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.

Mastering Apache Cassandra 3.x - An expert guide to improving database scalability and availability without compromising... Mastering Apache Cassandra 3.x - An expert guide to improving database scalability and availability without compromising performance, 3rd Edition (Paperback, 3rd Revised edition)
Aaron Ploetz, Tejaswi Malepati, Nishant Neeraj
R1,167 Discovery Miles 11 670 Ships in 10 - 15 working days

Build, manage, and configure high-performing, reliable NoSQL database for your applications with Cassandra Key Features Write programs more efficiently using Cassandra's features with the help of examples Configure Cassandra and fine-tune its parameters depending on your needs Integrate Cassandra database with Apache Spark and build strong data analytics pipeline Book DescriptionWith ever-increasing rates of data creation, the demand for storing data fast and reliably becomes a need. Apache Cassandra is the perfect choice for building fault-tolerant and scalable databases. Mastering Apache Cassandra 3.x teaches you how to build and architect your clusters, configure and work with your nodes, and program in a high-throughput environment, helping you understand the power of Cassandra as per the new features. Once you've covered a brief recap of the basics, you'll move on to deploying and monitoring a production setup and optimizing and integrating it with other software. You'll work with the advanced features of CQL and the new storage engine in order to understand how they function on the server-side. You'll explore the integration and interaction of Cassandra components, followed by discovering features such as token allocation algorithm, CQL3, vnodes, lightweight transactions, and data modelling in detail. Last but not least you will get to grips with Apache Spark. By the end of this book, you'll be able to analyse big data, and build and manage high-performance databases for your application. What you will learn Write programs more efficiently using Cassandra's features more efficiently Exploit the given infrastructure, improve performance, and tweak the Java Virtual Machine (JVM) Use CQL3 in your application in order to simplify working with Cassandra Configure Cassandra and fine-tune its parameters depending on your needs Set up a cluster and learn how to scale it Monitor a Cassandra cluster in different ways Use Apache Spark and other big data processing tools Who this book is forMastering Apache Cassandra 3.x is for you if you are a big data administrator, database administrator, architect, or developer who wants to build a high-performing, scalable, and fault-tolerant database. Prior knowledge of core concepts of databases is required.

Hands-On Big Data Analytics with PySpark - Analyze large datasets and discover techniques for testing, immunizing, and... Hands-On Big Data Analytics with PySpark - Analyze large datasets and discover techniques for testing, immunizing, and parallelizing Spark jobs (Paperback)
Rudy Lai, Bartlomiej Potaczek
R719 Discovery Miles 7 190 Ships in 10 - 15 working days

Use PySpark to easily crush messy data at-scale and discover proven techniques to create testable, immutable, and easily parallelizable Spark jobs Key Features Work with large amounts of agile data using distributed datasets and in-memory caching Source data from all popular data hosting platforms, such as HDFS, Hive, JSON, and S3 Employ the easy-to-use PySpark API to deploy big data Analytics for production Book DescriptionApache Spark is an open source parallel-processing framework that has been around for quite some time now. One of the many uses of Apache Spark is for data analytics applications across clustered computers. In this book, you will not only learn how to use Spark and the Python API to create high-performance analytics with big data, but also discover techniques for testing, immunizing, and parallelizing Spark jobs. You will learn how to source data from all popular data hosting platforms, including HDFS, Hive, JSON, and S3, and deal with large datasets with PySpark to gain practical big data experience. This book will help you work on prototypes on local machines and subsequently go on to handle messy data in production and at scale. This book covers installing and setting up PySpark, RDD operations, big data cleaning and wrangling, and aggregating and summarizing data into useful reports. You will also learn how to implement some practical and proven techniques to improve certain aspects of programming and administration in Apache Spark. By the end of the book, you will be able to build big data analytical solutions using the various PySpark offerings and also optimize them effectively. What you will learn Get practical big data experience while working on messy datasets Analyze patterns with Spark SQL to improve your business intelligence Use PySpark's interactive shell to speed up development time Create highly concurrent Spark programs by leveraging immutability Discover ways to avoid the most expensive operation in the Spark API: the shuffle operation Re-design your jobs to use reduceByKey instead of groupBy Create robust processing pipelines by testing Apache Spark jobs Who this book is forThis book is for developers, data scientists, business analysts, or anyone who needs to reliably analyze large amounts of large-scale, real-world data. Whether you're tasked with creating your company's business intelligence function or creating great data platforms for your machine learning models, or are looking to use code to magnify the impact of your business, this book is for you.

Security Tokens and Stablecoins Quick Start Guide - Learn how to build STO and stablecoin decentralized applications... Security Tokens and Stablecoins Quick Start Guide - Learn how to build STO and stablecoin decentralized applications (Paperback)
Weimin Sun, Xun (Brian) Wu, Angela Kwok
R887 Discovery Miles 8 870 Ships in 10 - 15 working days

A complete guide to understanding, developing, and testing popular security-token smart contracts Key Features Understand key Blockchain and Ethereum platforms concepts Step-by-step guide to developing STO smart contracts on Ethereum Monetize digital tokens under various U.S. securities laws Book DescriptionThe failure of initial coin offerings (ICOs) is no accident, as most ICOs do not link to a real asset and are not regulated. Realizing the shortcomings of ICOs, the blockchain community and potential investors embraced security token offerings (STOs) and stablecoins enthusiastically. In this book, we start with an overview of the blockchain technology along with its basic concepts. We introduce the concept behind STO, and cover the basic requirements for launching a STO and the relevant regulations governing its issuance. We discuss U.S. securities laws development in launching security digital tokens using blockchain technology and show some real use cases. We also explore the process of STO launches and legal considerations. We introduce popular security tokens in the current blockchain space and talk about how to develop a security token DApp, including smart contract development for ERC1404 tokens. Later, you'll learn to build frontend side functionalities to interact with smart contracts. Finally, we discuss stablecoin technical design functionalities for issuing and operating STO tokens by interacting with Ethereum smart contracts. By the end of this book, you will have learned more about STOs and gained a detailed knowledge of building relevant applications-all with the help of practical examples. What you will learn Understand the basic requirements for launching a security token offering Explore various US securities laws governing the offering of security digital tokens Get to grips with the stablecoin concept with the help of use cases Learn how to develop security token decentralized applications Understand the difference between ERC-20 and ERC-721 tokens Learn how to set up a development environment and build security tokens Explore the technical design of stablecoins Who this book is forThis book is ideal for blockchain beginners and business user developers who want to quickly master popular Security Token Offerings and stablecoins. Readers will learn how to develop blockchain/digital cryptos, guided by U.S. securities laws and utilizing some real use cases. Prior exposure to an Object-Oriented Programming language such as JavaScript would be an advantage, but is not mandatory.

Machine Learning with Scala Quick Start Guide - Leverage popular machine learning algorithms and techniques and implement them... Machine Learning with Scala Quick Start Guide - Leverage popular machine learning algorithms and techniques and implement them in Scala (Paperback)
Md. Rezaul Karim
R840 Discovery Miles 8 400 Ships in 10 - 15 working days

Supervised and unsupervised machine learning made easy in Scala with this quick-start guide. Key Features Construct and deploy machine learning systems that learn from your data and give accurate predictions Unleash the power of Spark ML along with popular machine learning algorithms to solve complex tasks in Scala. Solve hands-on problems by combining popular neural network architectures such as LSTM and CNN using Scala with DeepLearning4j library Book DescriptionScala is a highly scalable integration of object-oriented nature and functional programming concepts that make it easy to build scalable and complex big data applications. This book is a handy guide for machine learning developers and data scientists who want to develop and train effective machine learning models in Scala. The book starts with an introduction to machine learning, while covering deep learning and machine learning basics. It then explains how to use Scala-based ML libraries to solve classification and regression problems using linear regression, generalized linear regression, logistic regression, support vector machine, and Naive Bayes algorithms. It also covers tree-based ensemble techniques for solving both classification and regression problems. Moving ahead, it covers unsupervised learning techniques, such as dimensionality reduction, clustering, and recommender systems. Finally, it provides a brief overview of deep learning using a real-life example in Scala. What you will learn Get acquainted with JVM-based machine learning libraries for Scala such as Spark ML and Deeplearning4j Learn RDDs, DataFrame, and Spark SQL for analyzing structured and unstructured data Understand supervised and unsupervised learning techniques with best practices and pitfalls Learn classification and regression analysis with linear regression, logistic regression, Naive Bayes, support vector machine, and tree-based ensemble techniques Learn effective ways of clustering analysis with dimensionality reduction techniques Learn recommender systems with collaborative filtering approach Delve into deep learning and neural network architectures Who this book is forThis book is for machine learning developers looking to train machine learning models in Scala without spending too much time and effort. Some fundamental knowledge of Scala programming and some basics of statistics and linear algebra is all you need to get started with this book.

Machine Learning with R Quick Start Guide - A beginner's guide to implementing machine learning techniques from scratch... Machine Learning with R Quick Start Guide - A beginner's guide to implementing machine learning techniques from scratch using R 3.5 (Paperback)
Ivan Pastor Sanz
R840 Discovery Miles 8 400 Ships in 10 - 15 working days

Learn how to use R to apply powerful machine learning methods and gain insight into real-world applications using clustering, logistic regressions, random forests, support vector machine, and more. Key Features Use R 3.5 to implement real-world examples in machine learning Implement key machine learning algorithms to understand the working mechanism of smart models Create end-to-end machine learning pipelines using modern libraries from the R ecosystem Book DescriptionMachine Learning with R Quick Start Guide takes you on a data-driven journey that starts with the very basics of R and machine learning. It gradually builds upon core concepts so you can handle the varied complexities of data and understand each stage of the machine learning pipeline. From data collection to implementing Natural Language Processing (NLP), this book covers it all. You will implement key machine learning algorithms to understand how they are used to build smart models. You will cover tasks such as clustering, logistic regressions, random forests, support vector machines, and more. Furthermore, you will also look at more advanced aspects such as training neural networks and topic modeling. By the end of the book, you will be able to apply the concepts of machine learning, deal with data-related problems, and solve them using the powerful yet simple language that is R. What you will learn Introduce yourself to the basics of machine learning with R 3.5 Get to grips with R techniques for cleaning and preparing your data for analysis and visualize your results Learn to build predictive models with the help of various machine learning techniques Use R to visualize data spread across multiple dimensions and extract useful features Use interactive data analysis with R to get insights into data Implement supervised and unsupervised learning, and NLP using R libraries Who this book is forThis book is for graduate students, aspiring data scientists, and data analysts who wish to enter the field of machine learning and are looking to implement machine learning techniques and methodologies from scratch using R 3.5. A working knowledge of the R programming language is expected.

VB.Net And OLEDB - Working with the Datatable (Paperback): Richard Thomas Edwards VB.Net And OLEDB - Working with the Datatable (Paperback)
Richard Thomas Edwards
R413 Discovery Miles 4 130 Ships in 10 - 15 working days
VB.Net Code Warrior - Working with SQL Client and Dataset (Paperback): Richard Thomas Edwards VB.Net Code Warrior - Working with SQL Client and Dataset (Paperback)
Richard Thomas Edwards
R413 Discovery Miles 4 130 Ships in 10 - 15 working days
Powershell And Odbc - Working with the Dataview (Paperback): Richard Thomas Edwards Powershell And Odbc - Working with the Dataview (Paperback)
Richard Thomas Edwards
R400 Discovery Miles 4 000 Ships in 10 - 15 working days
MongoDB 4 Quick Start Guide - Learn the skills you need to work with the world's most popular NoSQL database (Paperback):... MongoDB 4 Quick Start Guide - Learn the skills you need to work with the world's most popular NoSQL database (Paperback)
Doug Bierer
R840 Discovery Miles 8 400 Ships in 10 - 15 working days

A fast paced guide that will help you to create, read, update and delete data using MongoDB Key Features Create secure databases with MongoDB Manipulate and maintain your database Model and use data in a No SQL environment with MongoDB Book DescriptionMongoDB has grown to become the de facto NoSQL database with millions of users, from small start-ups to Fortune 500 companies. It can solve problems that are considered difficult, if not impossible, for aging RDBMS technologies. Written for version 4 of MongoDB, this book is the easiest way to get started with MongoDB. You will start by getting a MongoDB installation up and running in a safe and secure manner. You will learn how to perform mission-critical create, read, update, and delete operations, and set up database security. You will also learn about advanced features of MongoDB such as the aggregation pipeline, replication, and sharding. You will learn how to build a simple web application that uses MongoDB to respond to AJAX queries, and see how to make use of the MongoDB programming language driver for PHP. The examples incorporate new features available in MongoDB version 4 where appropriate. What you will learn Get a standard MongoDB database up and running quickly Perform simple CRUD operations on the database using the MongoDB command shell Set up a simple aggregation pipeline to return subsets of data grouped, sorted, and filtered Safeguard your data via replication and handle massive amounts of data via sharding Publish data from a web form to the database using a program language driver Explore the basic CRUD operations performed using the PHP MongoDB driver Who this book is forWeb developers, IT professionals and Database Administrators (DBAs) who want to learn how to create and manage MongoDB databases.

Beginning Data Science with Python and Jupyter - Use powerful industry-standard tools within Jupyter and the Python ecosystem... Beginning Data Science with Python and Jupyter - Use powerful industry-standard tools within Jupyter and the Python ecosystem to unlock new, actionable insights from your data (Paperback)
Alex Galea
R529 Discovery Miles 5 290 Ships in 10 - 15 working days

Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book DescriptionGet to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is forThis book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.

VB.Net And SQL Client - Working with the Datatable (Paperback): Richard Thomas Edwards VB.Net And SQL Client - Working with the Datatable (Paperback)
Richard Thomas Edwards
R413 Discovery Miles 4 130 Ships in 10 - 15 working days
Hands-On Data Science with Anaconda - Utilize the right mix of tools to create high-performance data science applications... Hands-On Data Science with Anaconda - Utilize the right mix of tools to create high-performance data science applications (Paperback)
Yuxing Yan, James Yan
R1,068 Discovery Miles 10 680 Ships in 10 - 15 working days

Develop, deploy, and streamline your data science projects with the most popular end-to-end platform, Anaconda Key Features -Use Anaconda to find solutions for clustering, classification, and linear regression -Analyze your data efficiently with the most powerful data science stack -Use the Anaconda cloud to store, share, and discover projects and libraries Book DescriptionAnaconda is an open source platform that brings together the best tools for data science professionals with more than 100 popular packages supporting Python, Scala, and R languages. Hands-On Data Science with Anaconda gets you started with Anaconda and demonstrates how you can use it to perform data science operations in the real world. The book begins with setting up the environment for Anaconda platform in order to make it accessible for tools and frameworks such as Jupyter, pandas, matplotlib, Python, R, Julia, and more. You'll walk through package manager Conda, through which you can automatically manage all packages including cross-language dependencies, and work across Linux, macOS, and Windows. You'll explore all the essentials of data science and linear algebra to perform data science tasks using packages such as SciPy, contrastive, scikit-learn, Rattle, and Rmixmod. Once you're accustomed to all this, you'll start with operations in data science such as cleaning, sorting, and data classification. You'll move on to learning how to perform tasks such as clustering, regression, prediction, and building machine learning models and optimizing them. In addition to this, you'll learn how to visualize data using the packages available for Julia, Python, and R. What you will learn Perform cleaning, sorting, classification, clustering, regression, and dataset modeling using Anaconda Use the package manager conda and discover, install, and use functionally efficient and scalable packages Get comfortable with heterogeneous data exploration using multiple languages within a project Perform distributed computing and use Anaconda Accelerate to optimize computational powers Discover and share packages, notebooks, and environments, and use shared project drives on Anaconda Cloud Tackle advanced data prediction problems Who this book is forHands-On Data Science with Anaconda is for you if you are a developer who is looking for the best tools in the market to perform data science. It's also ideal for data analysts and data science professionals who want to improve the efficiency of their data science applications by using the best libraries in multiple languages. Basic programming knowledge with R or Python and introductory knowledge of linear algebra is expected.

VB6 Code Warrior - Working With ADO (Paperback): Richard Thomas Edwards VB6 Code Warrior - Working With ADO (Paperback)
Richard Thomas Edwards
R414 Discovery Miles 4 140 Ships in 10 - 15 working days
C++.Net and OLEDB - Working with the Dataset (Paperback): Richard Thomas Edwards C++.Net and OLEDB - Working with the Dataset (Paperback)
Richard Thomas Edwards
R400 Discovery Miles 4 000 Ships in 10 - 15 working days
Hands-On Artificial Intelligence for IoT - Expert machine learning and deep learning techniques for developing smarter IoT... Hands-On Artificial Intelligence for IoT - Expert machine learning and deep learning techniques for developing smarter IoT systems (Paperback)
Amita Kapoor
R1,425 Discovery Miles 14 250 Ships in 10 - 15 working days

Build smarter systems by combining artificial intelligence and the Internet of Things-two of the most talked about topics today Key Features Leverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT data Process IoT data and predict outcomes in real time to build smart IoT models Cover practical case studies on industrial IoT, smart cities, and home automation Book DescriptionThere are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence. What you will learn Apply different AI techniques including machine learning and deep learning using TensorFlow and Keras Access and process data from various distributed sources Perform supervised and unsupervised machine learning for IoT data Implement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platforms Forecast time-series data using deep learning methods Implementing AI from case studies in Personal IoT, Industrial IoT, and Smart Cities Gain unique insights from data obtained from wearable devices and smart devices Who this book is forIf you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.

Regression Analysis with R - Design and develop statistical nodes to identify unique relationships within data at scale... Regression Analysis with R - Design and develop statistical nodes to identify unique relationships within data at scale (Paperback)
Giuseppe Ciaburro
R1,198 Discovery Miles 11 980 Ships in 10 - 15 working days

Build effective regression models in R to extract valuable insights from real data Key Features Implement different regression analysis techniques to solve common problems in data science - from data exploration to dealing with missing values From Simple Linear Regression to Logistic Regression - this book covers all regression techniques and their implementation in R A complete guide to building effective regression models in R and interpreting results from them to make valuable predictions Book DescriptionRegression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables. This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are - supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process - loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples. By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects. What you will learn Get started with the journey of data science using Simple linear regression Deal with interaction, collinearity and other problems using multiple linear regression Understand diagnostics and what to do if the assumptions fail with proper analysis Load your dataset, treat missing values, and plot relationships with exploratory data analysis Develop a perfect model keeping overfitting, under-fitting, and cross-validation into consideration Deal with classification problems by applying Logistic regression Explore other regression techniques - Decision trees, Bagging, and Boosting techniques Learn by getting it all in action with the help of a real world case study. Who this book is forThis book is intended for budding data scientists and data analysts who want to implement regression analysis techniques using R. If you are interested in statistics, data science, machine learning and wants to get an easy introduction to the topic, then this book is what you need! Basic understanding of statistics and math will help you to get the most out of the book. Some programming experience with R will also be helpful

Python Data Science Essentials - A practitioner's guide covering essential data science principles, tools, and techniques,... Python Data Science Essentials - A practitioner's guide covering essential data science principles, tools, and techniques, 3rd Edition (Paperback, 3rd Revised edition)
Alberto Boschetti, Luca Massaron
R1,316 Discovery Miles 13 160 Ships in 10 - 15 working days

Gain useful insights from your data using popular data science tools Key Features A one-stop guide to Python libraries such as pandas and NumPy Comprehensive coverage of data science operations such as data cleaning and data manipulation Choose scalable learning algorithms for your data science tasks Book DescriptionFully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You'll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users What you will learn Set up your data science toolbox on Windows, Mac, and Linux Use the core machine learning methods offered by the scikit-learn library Manipulate, fix, and explore data to solve data science problems Learn advanced explorative and manipulative techniques to solve data operations Optimize your machine learning models for optimized performance Explore and cluster graphs, taking advantage of interconnections and links in your data Who this book is forIf you're a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.

Apache Superset Quick Start Guide - Develop interactive visualizations by creating user-friendly dashboards (Paperback):... Apache Superset Quick Start Guide - Develop interactive visualizations by creating user-friendly dashboards (Paperback)
Shashank Shekhar
R840 Discovery Miles 8 400 Ships in 10 - 15 working days

Integrate open source data analytics and build business intelligence on SQL databases with Apache Superset. The quick, intuitive nature for data visualization in a web application makes it easy for creating interactive dashboards. Key Features Work with Apache Superset's rich set of data visualizations Create interactive dashboards and data storytelling Easily explore data Book DescriptionApache Superset is a modern, open source, enterprise-ready business intelligence (BI) web application. With the help of this book, you will see how Superset integrates with popular databases like Postgres, Google BigQuery, Snowflake, and MySQL. You will learn to create real time data visualizations and dashboards on modern web browsers for your organization using Superset. First, we look at the fundamentals of Superset, and then get it up and running. You'll go through the requisite installation, configuration, and deployment. Then, we will discuss different columnar data types, analytics, and the visualizations available. You'll also see the security tools available to the administrator to keep your data safe. You will learn how to visualize relationships as graphs instead of coordinates on plain orthogonal axes. This will help you when you upload your own entity relationship dataset and analyze the dataset in new, different ways. You will also see how to analyze geographical regions by working with location data. Finally, we cover a set of tutorials on dashboard designs frequently used by analysts, business intelligence professionals, and developers. What you will learn Get to grips with the fundamentals of data exploration using Superset Set up a working instance of Superset on cloud services like Google Compute Engine Integrate Superset with SQL databases Build dashboards with Superset Calculate statistics in Superset for numerical, categorical, or text data Understand visualization techniques, filtering, and grouping by aggregation Manage user roles and permissions in Superset Work with SQL Lab Who this book is forThis book is for data analysts, BI professionals, and developers who want to learn Apache Superset. If you want to create interactive dashboards from SQL databases, this book is what you need. Working knowledge of Python will be an advantage but not necessary to understand this book.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi Paperback  (11)
R400 R369 Discovery Miles 3 690
Hybrid PID Based Predictive Control…
Sabo Miya Hassan, Rosdiazli Ibrahim, … Hardcover R2,873 Discovery Miles 28 730
Recent Research in Control Engineering…
Olga Dolinina, Igor Bessmertny, … Hardcover R5,719 Discovery Miles 57 190
Parallel PnP Robots - Parametric…
Guanglei Wu, Huiping Shen Hardcover R2,897 Discovery Miles 28 970
Control Systems
William Bolton Paperback R1,052 Discovery Miles 10 520
Impossible Return - Cape Town's Forced…
Siona O' Connell Paperback R355 R333 Discovery Miles 3 330
Mechatronics '98
J. Adolfsson, J. Karlsen Hardcover R7,196 Discovery Miles 71 960
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala Paperback R600 Discovery Miles 6 000
Tell Me Your Story - South Africans…
Ruda Landman Paperback  (3)
R390 R366 Discovery Miles 3 660
The Future of Creative Work - Creativity…
Greg Hearn Hardcover R3,488 Discovery Miles 34 880

 

Partners