|
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Das Arbeitsergebnis des Studienkreises Dr. Parli wurde zunachst in
Form eines internen Arbeitsberichtes den Mitgliedern des
Foerderervereins des Betriebswirtschaftlichen Instituts fur
Organisation und Automation an der Universitat zu Koeln (BIFOA) zur
Verfugung gestellt. Die sich daraus er- gebende Diskussion zeigte,
dass die Probleme der Istaufnahme bei automati- sierter
Datenverarbeitung (ADV) nach wie vor in Wissenschaft und Praxis von
hoher Aktualitat sind, so dass mir nunmehr - nicht zuletzt aufgrund
zahlreicher Anfragen aus der Wirtschaftspraxis - eine Publikation
in der Instituts-Schriftenreihe sinnvoll erscheint. Damit werden
die Ergebnisse einem groesseren Interessentenkreis zuganglich und
koennen insbesondere mittleren und kleineren Unternehmungen und
Einheiten der oeffentlichen Verwaltung, die aufgrund des
vielfaltigen Angebots unterschiedlicher Computergroessen ebenfalls
in den Kreis der Anwender von Anlagen der automatisierten
Datenverarbeitung geruckt sind, als Orientierungshilfe dienen. In
der vorliegenden Arbeit werden die Erfahrungen von
Wirtschaftsprakti- kern aus Grossunternehmungen verschiedener
Branchen sowie der oeffent- lichen Verwaltung systematisiert und
auf ihre Allgemeingultigkeit unter- sucht. Es handelt sich um
Erfahrungen, die aus Unternehmungen stammen, die sich aufgrund
ihres Geschaftsumfanges schon fruhzeitig zum Einsatz von
ADV-Anlagen entschliessen mussten und die teilweise - entsprechend
den Stufen der technischen und organisatorischen Entwicklung - mit
den Istaufnahmeproblemen unterschiedlichster Art konfrontiert
wurden. Das Hauptanliegen der Schrift besteht nicht in einer rein
theoretischen Durchdringung des Problemkreises Istaufnahme und
Automatisierte Daten- verarbeitung, sondern in einer
praxisbezogenen Aufbereitung und Systema- tisierung empirischen
Wissens auf diesem Gebiet.
Solve real-world data problems and create data-driven workflows for
easy data movement and processing at scale with Azure Data Factory
Key Features Learn how to load and transform data from various
sources, both on-premises and on cloud Use Azure Data Factory's
visual environment to build and manage hybrid ETL pipelines
Discover how to prepare, transform, process, and enrich data to
generate key insights Book DescriptionAzure Data Factory (ADF) is a
modern data integration tool available on Microsoft Azure. This
Azure Data Factory Cookbook helps you get up and running by showing
you how to create and execute your first job in ADF. You'll learn
how to branch and chain activities, create custom activities, and
schedule pipelines. This book will help you to discover the
benefits of cloud data warehousing, Azure Synapse Analytics, and
Azure Data Lake Gen2 Storage, which are frequently used for big
data analytics. With practical recipes, you'll learn how to
actively engage with analytical tools from Azure Data Services and
leverage your on-premise infrastructure with cloud-native tools to
get relevant business insights. As you advance, you'll be able to
integrate the most commonly used Azure Services into ADF and
understand how Azure services can be useful in designing ETL
pipelines. The book will take you through the common errors that
you may encounter while working with ADF and show you how to use
the Azure portal to monitor pipelines. You'll also understand error
messages and resolve problems in connectors and data flows with the
debugging capabilities of ADF. By the end of this book, you'll be
able to use ADF as the main ETL and orchestration tool for your
data warehouse or data platform projects. What you will learn
Create an orchestration and transformation job in ADF Develop,
execute, and monitor data flows using Azure Synapse Create big data
pipelines using Azure Data Lake and ADF Build a machine learning
app with Apache Spark and ADF Migrate on-premises SSIS jobs to ADF
Integrate ADF with commonly used Azure services such as Azure ML,
Azure Logic Apps, and Azure Functions Run big data compute jobs
within HDInsight and Azure Databricks Copy data from AWS S3 and
Google Cloud Storage to Azure Storage using ADF's built-in
connectors Who this book is forThis book is for ETL developers,
data warehouse and ETL architects, software professionals, and
anyone who wants to learn about the common and not-so-common
challenges faced while developing traditional and hybrid ETL
solutions using Microsoft's Azure Data Factory. You'll also find
this book useful if you are looking for recipes to improve or
enhance your existing ETL pipelines. Basic knowledge of data
warehousing is expected.
Data is an increasingly important business asset and enabler for
organisational activities. Data quality is a key aspect of data
management and failure to understand it increases organisational
risk and decreases efficiency and profitability. This book explains
data quality management in practical terms, focusing on three key
areas - the nature of data in enterprises, the purpose and scope of
data quality management, and implementing a data quality management
system, in line with ISO 8000-61.
Learn how to gain insights from your data as well as machine
learning and become a presentation pro who can create interactive
dashboards Key Features Enhance your presentation skills by
implementing engaging data storytelling and visualization
techniques Learn the basics of machine learning and easily apply
machine learning models to your data Improve productivity by
automating your data processes Book DescriptionData Analytics Made
Easy is an accessible beginner's guide for anyone working with
data. The book interweaves four key elements: Data visualizations
and storytelling - Tired of people not listening to you and
ignoring your results? Don't worry; chapters 7 and 8 show you how
to enhance your presentations and engage with your managers and
co-workers. Learn to create focused content with a well-structured
story behind it to captivate your audience. Automating your data
workflows - Improve your productivity by automating your data
analysis. This book introduces you to the open-source platform,
KNIME Analytics Platform. You'll see how to use this no-code and
free-to-use software to create a KNIME workflow of your data
processes just by clicking and dragging components. Machine
learning - Data Analytics Made Easy describes popular machine
learning approaches in a simplified and visual way before
implementing these machine learning models using KNIME. You'll not
only be able to understand data scientists' machine learning
models; you'll be able to challenge them and build your own.
Creating interactive dashboards - Follow the book's simple
methodology to create professional-looking dashboards using
Microsoft Power BI, giving users the capability to slice and dice
data and drill down into the results. What you will learn
Understand the potential of data and its impact on your business
Import, clean, transform, combine data feeds, and automate your
processes Influence business decisions by learning to create
engaging presentations Build real-world models to improve
profitability, create customer segmentation, automate and improve
data reporting, and more Create professional-looking and
business-centric visuals and dashboards Open the lid on the black
box of AI and learn about and implement supervised and unsupervised
machine learning models Who this book is forThis book is for
beginners who work with data and those who need to know how to
interpret their business/customer data. The book also covers the
high-level concepts of data workflows, machine learning, data
storytelling, and visualizations, which are useful for managers. No
previous math, statistics, or computer science knowledge is
required.
1m Oktober 1968 trafen Klinikchefs mit Spezialisten aus dem Bereich
der Hoch- schulen und der Computer-lndustrie in Reinhartshausen
zusammen, urn innerhalb der raschen Entwicklung der sogenannten
zweiten technischen Revolution den Trend der modernen Medizin
aufzusptiren. Ais Diskussionsgrundlage dienten ausgewillllte Refe-
rate. Ein tiberblick tiber den Verlauf dieser Tagung Ui.l3t es
niitzlich erscheinen, die Thematik einem grol3eren Kreis
zugiinglich zu machen. So haben wir uns entschlossen, die
Manuskripte der Autoren zu einem Werk zusammenzuschliel3en. Die
technischen Grundlagen der elektronischen Datenverarbeitung sollen
dabei allerdings unbertick- sichtigt bleiben. Die Durchsicht der
Beitrage mag den Eindruck erwecken, dal3 anscheinend bereits
zurtickliegende Entwicklungsphasen mit phantasievollen Forderungen
an die Zukunft inhomogen zusammengestellt seien. Aber es kommt uns
darauf an, in der bestaunens- wert en Schnelligkeit, mit der sich
eine elektronische Informationsverarbeitung - oder besser
formuliert - die moderne Wissenschaft der Informatik vollzieht, den
gegen- wartigen Zustand in der Medizin aufzuzeigen und in ihm an
den Einzelheiten die Ten- denzen darzustellen, die sich bald aus
den ursprtinglichen mechanischen Formen der Erfassung und
Verarbeitung von Daten, bald aus dem Bild der Zukunft deutlicher
ab- zeichnen. Wir hegen die Hoffnung, dal3 auf dieser Basis sich
pragende Konzeptionen fUr die Gestaltung der Zukunft ergeben. Herrn
Kollegen NORBERT EICHENSEHER danken wir fUr seine wertvolle Unter-
stiltzung bei den Korrekturen und der Abfassung des
Sachverzeichnisses.
This report discusses the role computer-assisted personal
interviewing (CAPI) can play in transforming survey data collection
to allow better monitoring of the Sustainable Development Goals.
The first part of this publication provides rigorous quantitative
evidence on why CAPI is a better alternative to the traditional pen
and paper interviewing method, particularly in the context of
nationally representative surveys. The second part discusses the
benefits of delivering CAPI training to statisticians using the
popular massive online open course format. The final part provides
a summary of existing CAPI platforms and offers some preliminary
advice for NSOs to consider when selecting a CAPI platform for
their institution. This is a Special Supplement to the Key
Indicators for Asia and the Pacific 2019.
Als Stahl bezeichnet man heute alle Eisenlegierungen - mit Ausnahme
der nicht schmiedbaren hochkohlenstoffhaltigen Gu sorten wie
Grauguli, Hartguf und Ternperguf - ohne Riicksichr auf ihre
Eigenschaften. Friiher wurde als wesentliches Merkmal des Stahles
die Hartbarkeit angesehen. Es gibt aber eine ganze Reihe von
Stahlen, die sich nicht harten lassen, die durch das Abschrecken
aus hohen Temperaturen im Gegenteil sogar weicher, zaher werden.
Edelstdble werden vielfach solche Stahle genannt, die au er mit
Kohlenstoff auch noch mit anderen Grundstoffen, z. B. mit Chrom,
Nickel, Wolfram, Vanadin usw. legiert sind. Diese Begriffsbestim-
mung ist jedoch nicht erschopfend und auch anfechtbar, Denn man
wird einen reinen Kohlenstoffstahl, der sorgfaltig erzeugt und auf
dem ganzen Wege der Herstellung - vom Gu bis zum Versand - immer
wieder gewissenhaft gepriift worden ist, zweifellos auch zu den
Edelstahlen rechnen miissen. Andererseits enthalten manchmal
Massenstahle - auch als unbeabsichtigte Verunreinigungen - ge-
wisse Mengen von Legierungselementen. Das Richtige wird man
treffen, wenn man die bei den grofsen Hiittenwerken in grofien
Mengen erzeugten billigen Stahle als .Mas- senstahle bezeichnet,
die von einem Edelstahlwerk mit Sorgfalt und unter scharfster
Kontrolle hergestellten Stahle dagegen als Edelstahle. Die billigen
Massenstahle werden meistens nach Festigkeit ver- kauft, die
Edelstahle dagegen nach dem Verwendungszweck und unter einer
Markenbezeichnung.
Leverage the Azure analytics platform's key analytics services to
deliver unmatched intelligence for your data Key Features Learn to
ingest, prepare, manage, and serve data for immediate business
requirements Bring enterprise data warehousing and big data
analytics together to gain insights from your data Develop
end-to-end analytics solutions using Azure Synapse Book
DescriptionAzure Synapse Analytics, which Microsoft describes as
the next evolution of Azure SQL Data Warehouse, is a limitless
analytics service that brings enterprise data warehousing and big
data analytics together. With this book, you'll learn how to
discover insights from your data effectively using this platform.
The book starts with an overview of Azure Synapse Analytics, its
architecture, and how it can be used to improve business
intelligence and machine learning capabilities. Next, you'll go on
to choose and set up the correct environment for your business
problem. You'll also learn a variety of ways to ingest data from
various sources and orchestrate the data using transformation
techniques offered by Azure Synapse. Later, you'll explore how to
handle both relational and non-relational data using the SQL
language. As you progress, you'll perform real-time streaming and
execute data analysis operations on your data using various
languages, before going on to apply ML techniques to derive
accurate and granular insights from data. Finally, you'll discover
how to protect sensitive data in real time by using security and
privacy features. By the end of this Azure book, you'll be able to
build end-to-end analytics solutions while focusing on data prep,
data management, data warehousing, and AI tasks. What you will
learn Explore the necessary considerations for data ingestion and
orchestration while building analytical pipelines Understand
pipelines and activities in Synapse pipelines and use them to
construct end-to-end data-driven workflows Query data using various
coding languages on Azure Synapse Focus on Synapse SQL and Synapse
Spark Manage and monitor resource utilization and query activity in
Azure Synapse Connect Power BI workspaces with Azure Synapse and
create or modify reports directly from Synapse Studio Create and
manage IP firewall rules in Azure Synapse Who this book is forThis
book is for data architects, data scientists, data engineers, and
business analysts who are looking to get up and running with the
Azure Synapse Analytics platform. Basic knowledge of data
warehousing will be beneficial to help you understand the concepts
covered in this book more effectively.
Oberlegungen iiber die Automatisierung der Verwaltungstatigkeit in
indu striellen Unternehmungen lie en vermuten, daB die
verschiedenartigen ein zelnen Arbeiten auf eine gleichartige
Grundfunktion zuriickgefiihrt werden konnen. Zu dieser
Fragestellung gab Herr Professor Dr. Dr. Beste dankens werterweise
die Anregung, die Untersuchung in der vorliegenden allgemei nen
Fassung durchzufiihren. Der Verfasser hat sich bemiiht, in
mehrjahriger praktischer Tatigkeit die dargestellten theoretischen
Erkenntnisse aus den in der industriellen Praxis vorgefundenen
Gegebenheiten heraus zu entwickeln. Bei der Durchsprache einzelner
Probleme erhielt der Verfasser dariiber hin aus von Herrn Professor
Dr. Dr. Beste und Herrn Professor Dr. von Kortz fleisch wertvolle
Anregungen, fUr die er auch an dieser Stelle seinen beson deren
Dank aussprechen mochte. Die Arbeit wurde im Rahmen des
Industrieseminars der Universitat Koln angefertigt. Essen, den 1.
November 1962 INHALT Seite 5 Vorwort I. Begriffe und Bereich einer
betriebswirtschaftlichen Untersuchung uber die Information in der
industriellen Unternehmung . . . . . . . 9 A. Unterschiedliche
Produktivit1it bei der Materialverarbeitung und der
Informationsverarbeitung . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 10 B. Zum Wesen der Information als
Tatigkeitsgegenstand in der industriellen Unternehmung und zur
Kommunikation . . . . . . . 12 C. Bereich und Ziele der
Untersuchung . . . . . . . . . . . . . . . . . . . . . . . . 14 II.
Die Grundbausteine der Information und ihrer Verarbeitung . . . 17
A. Die elementare Struktur der Information . . . . . . . . . . . .
. . . . . . . . 17 1. Der formale Gehalt der Information . . . . .
. . . . . . . . . . . . . . . . . . 18 2. Der informative Gehalt
cler Information . . . . . . . . . . . . . . . . . . . . 23 3. Die
betriebswirtschaftliche MaBeinheit der Information . . . . . . . 26
B. Die elementaren Kommunikationswege . . . . . . . . . . . . . . .
. . . . . . . 28 1. Die vertikale und die horizontale Anordnung der
Kommunikationswege . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 28 2. Das geschlossene Kommunikationssystem
als grundsatzliche or- nisatorische Struktur . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 32 C. Die
elementaren Verarbeitungsvorgange . . . . . . . . . . . . . . . . .
. . . ."
Quickly build and deploy massive data pipelines and improve
productivity using Azure Databricks Key Features Get to grips with
the distributed training and deployment of machine learning and
deep learning models Learn how ETLs are integrated with Azure Data
Factory and Delta Lake Explore deep learning and machine learning
models in a distributed computing infrastructure Book
DescriptionMicrosoft Azure Databricks helps you to harness the
power of distributed computing and apply it to create robust data
pipelines, along with training and deploying machine learning and
deep learning models. Databricks' advanced features enable
developers to process, transform, and explore data. Distributed
Data Systems with Azure Databricks will help you to put your
knowledge of Databricks to work to create big data pipelines. The
book provides a hands-on approach to implementing Azure Databricks
and its associated methodologies that will make you productive in
no time. Complete with detailed explanations of essential concepts,
practical examples, and self-assessment questions, you'll begin
with a quick introduction to Databricks core functionalities,
before performing distributed model training and inference using
TensorFlow and Spark MLlib. As you advance, you'll explore MLflow
Model Serving on Azure Databricks and implement distributed
training pipelines using HorovodRunner in Databricks. Finally,
you'll discover how to transform, use, and obtain insights from
massive amounts of data to train predictive models and create
entire fully working data pipelines. By the end of this MS Azure
book, you'll have gained a solid understanding of how to work with
Databricks to create and manage an entire big data pipeline. What
you will learn Create ETLs for big data in Azure Databricks Train,
manage, and deploy machine learning and deep learning models
Integrate Databricks with Azure Data Factory for extract,
transform, load (ETL) pipeline creation Discover how to use Horovod
for distributed deep learning Find out how to use Delta Engine to
query and process data from Delta Lake Understand how to use Data
Factory in combination with Databricks Use Structured Streaming in
a production-like environment Who this book is forThis book is for
software engineers, machine learning engineers, data scientists,
and data engineers who are new to Azure Databricks and want to
build high-quality data pipelines without worrying about
infrastructure. Knowledge of Azure Databricks basics is required to
learn the concepts covered in this book more effectively. A basic
understanding of machine learning concepts and beginner-level
Python programming knowledge is also recommended.
 |
Research Methodology
(Paperback)
Gabriel Waweru, Samuel O Onyuma, Joan W Murumba
|
R1,261
R1,052
Discovery Miles 10 520
Save R209 (17%)
|
Ships in 10 - 15 working days
|
|
Quickly build and deploy machine learning models without managing
infrastructure, and improve productivity using Amazon SageMaker's
capabilities such as Amazon SageMaker Studio, Autopilot,
Experiments, Debugger, and Model Monitor Key Features Build, train,
and deploy machine learning models quickly using Amazon SageMaker
Analyze, detect, and receive alerts relating to various business
problems using machine learning algorithms and techniques Improve
productivity by training and fine-tuning machine learning models in
production Book DescriptionAmazon SageMaker enables you to quickly
build, train, and deploy machine learning (ML) models at scale,
without managing any infrastructure. It helps you focus on the ML
problem at hand and deploy high-quality models by removing the
heavy lifting typically involved in each step of the ML process.
This book is a comprehensive guide for data scientists and ML
developers who want to learn the ins and outs of Amazon SageMaker.
You'll understand how to use various modules of SageMaker as a
single toolset to solve the challenges faced in ML. As you
progress, you'll cover features such as AutoML, built-in algorithms
and frameworks, and the option for writing your own code and
algorithms to build ML models. Later, the book will show you how to
integrate Amazon SageMaker with popular deep learning libraries
such as TensorFlow and PyTorch to increase the capabilities of
existing models. You'll also learn to get the models to production
faster with minimum effort and at a lower cost. Finally, you'll
explore how to use Amazon SageMaker Debugger to analyze, detect,
and highlight problems to understand the current model state and
improve model accuracy. By the end of this Amazon book, you'll be
able to use Amazon SageMaker on the full spectrum of ML workflows,
from experimentation, training, and monitoring to scaling,
deployment, and automation. What you will learn Create and automate
end-to-end machine learning workflows on Amazon Web Services (AWS)
Become well-versed with data annotation and preparation techniques
Use AutoML features to build and train machine learning models with
AutoPilot Create models using built-in algorithms and frameworks
and your own code Train computer vision and NLP models using
real-world examples Cover training techniques for scaling, model
optimization, model debugging, and cost optimization Automate
deployment tasks in a variety of configurations using SDK and
several automation tools Who this book is forThis book is for
software engineers, machine learning developers, data scientists,
and AWS users who are new to using Amazon SageMaker and want to
build high-quality machine learning models without worrying about
infrastructure. Knowledge of AWS basics is required to grasp the
concepts covered in this book more effectively. Some understanding
of machine learning concepts and the Python programming language
will also be beneficial.
Get to grips with building and productionizing end-to-end big data
solutions in Azure and learn best practices for working with large
datasets Key Features Integrate with Azure Synapse Analytics,
Cosmos DB, and Azure HDInsight Kafka Cluster to scale and analyze
your projects and build pipelines Use Databricks SQL to run ad hoc
queries on your data lake and create dashboards Productionize a
solution using CI/CD for deploying notebooks and Azure Databricks
Service to various environments Book DescriptionAzure Databricks is
a unified collaborative platform for performing scalable analytics
in an interactive environment. The Azure Databricks Cookbook
provides recipes to get hands-on with the analytics process,
including ingesting data from various batch and streaming sources
and building a modern data warehouse. The book starts by teaching
you how to create an Azure Databricks instance within the Azure
portal, Azure CLI, and ARM templates. You'll work through clusters
in Databricks and explore recipes for ingesting data from sources,
including files, databases, and streaming sources such as Apache
Kafka and EventHub. The book will help you explore all the features
supported by Azure Databricks for building powerful end-to-end data
pipelines. You'll also find out how to build a modern data
warehouse by using Delta tables and Azure Synapse Analytics. Later,
you'll learn how to write ad hoc queries and extract meaningful
insights from the data lake by creating visualizations and
dashboards with Databricks SQL. Finally, you'll deploy and
productionize a data pipeline as well as deploy notebooks and Azure
Databricks service using continuous integration and continuous
delivery (CI/CD). By the end of this Azure book, you'll be able to
use Azure Databricks to streamline different processes involved in
building data-driven apps. What you will learn Read and write data
from and to various Azure resources and file formats Build a modern
data warehouse with Delta Tables and Azure Synapse Analytics
Explore jobs, stages, and tasks and see how Spark lazy evaluation
works Handle concurrent transactions and learn performance
optimization in Delta tables Learn Databricks SQL and create
real-time dashboards in Databricks SQL Integrate Azure DevOps for
version control, deploying, and productionizing solutions with
CI/CD pipelines Discover how to use RBAC and ACLs to restrict data
access Build end-to-end data processing pipeline for near real-time
data analytics Who this book is forThis recipe-based book is for
data scientists, data engineers, big data professionals, and
machine learning engineers who want to perform data analytics on
their applications. Prior experience of working with Apache Spark
and Azure is necessary to get the most out of this book.
|
|