0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (2)
  • R250 - R500 (5)
  • R500+ (2,006)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics

CFD Techniques and Energy Applications (Hardcover, 1st ed. 2018): Zied Driss, Brahim Necib, Hao-Chun Zhang CFD Techniques and Energy Applications (Hardcover, 1st ed. 2018)
Zied Driss, Brahim Necib, Hao-Chun Zhang
R2,794 Discovery Miles 27 940 Ships in 10 - 15 working days

This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in energy applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the energy applications. Also, they offer the fundamental knowledge for using CFD in energy applications through new technical approaches. Besides, they describe the CFD process steps and provide benefits and issues for using CFD analysis in understanding the flow complicated phenomena and its use in the design process. The best practices for reducing errors and uncertainties in the CFD analysis are further described. The book reveals not only the recent advances and future research trends of CFD Techniques but also provides the reader with valuable information about energy applications. It aims to provide the readers, such as engineers and PhD students, with the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can take advantage from the information of the book's different chapters.

Computation of Viscous Incompressible Flows (Hardcover, 2011 Ed.): Dochan Kwak, Cetin C. Kiris Computation of Viscous Incompressible Flows (Hardcover, 2011 Ed.)
Dochan Kwak, Cetin C. Kiris
R1,513 Discovery Miles 15 130 Ships in 10 - 15 working days

This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors' field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.

28th International Symposium on Shock Waves - Vol 2 (Hardcover, 2012 ed.): Konstantinos Kontis 28th International Symposium on Shock Waves - Vol 2 (Hardcover, 2012 ed.)
Konstantinos Kontis
R11,415 R8,209 Discovery Miles 82 090 Save R3,206 (28%) Ships in 12 - 17 working days

The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.

Fluid Mechanics for Engineers - A Graduate Textbook (Hardcover, 2010 Ed.): Meinhard T. Schobeiri Fluid Mechanics for Engineers - A Graduate Textbook (Hardcover, 2010 Ed.)
Meinhard T. Schobeiri
R3,014 Discovery Miles 30 140 Ships in 12 - 17 working days

The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.

Special Relativity in General Frames - From Particles to Astrophysics (Hardcover, 2013 ed.): Eric Gourgoulhon Special Relativity in General Frames - From Particles to Astrophysics (Hardcover, 2013 ed.)
Eric Gourgoulhon
R2,058 R1,442 Discovery Miles 14 420 Save R616 (30%) Ships in 12 - 17 working days

Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn't restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. "A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Eric Gourgoulhon." (excerpt from the Foreword by Thibault Damour)

New Results in Numerical and Experimental Fluid Mechanics VIII - Contributions to the 17th STAB/DGLR Symposium Berlin, Germany... New Results in Numerical and Experimental Fluid Mechanics VIII - Contributions to the 17th STAB/DGLR Symposium Berlin, Germany 2010 (Hardcover, 2013 ed.)
Andreas Dillmann, Gerd Heller, Hans-Peter Kreplin, Wolfgang Nitsche, Inken Peltzer
R5,586 Discovery Miles 55 860 Ships in 10 - 15 working days

This volume contains the contributions to the 17th Symposium of STAB (German Aerospace Aerodynamics Association). STAB includes German scientists and engineers from universities, research establishments and industry doing research and project work in numerical and experimental fluid mechanics and aerodynamics, mainly for aerospace but also for other applications. Many of the contributions collected in this book present results from national and European Community sponsored projects. This volume gives a broad overview of the ongoing work in this field in Germany and spans a wide range of topics: airplane aerodynamics, multidisciplinary optimization and new configurations, hypersonic flows and aerothermodynamics, flow control (drag reduction and laminar flow control), rotorcraft aerodynamics, aeroelasticity and structural dynamics, numerical simulation, experimental simulation and test techniques, aeroacoustics as well as the new fields of biomedical flows, convective flows, aerodynamics and acoustics of high-speed trains.

Powered Flight - The Engineering of Aerospace Propulsion (Hardcover, 2012 ed.): David R. Greatrix Powered Flight - The Engineering of Aerospace Propulsion (Hardcover, 2012 ed.)
David R. Greatrix
R1,571 Discovery Miles 15 710 Ships in 10 - 15 working days

Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author's experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ensure that the content is clear, representative but also interesting the text is complimented by a range of relevant graphs and photographs including representative engineering, in addition to several propeller performance charts. These items provide excellent reference and support materials for graduate and undergraduate projects and exercises. Students in the field of aerospace engineering will find that Powered Flight - The Engineering of Aerospace Propulsion supports their studies from the introductory stage and throughout more intensive follow-on studies.

Computational Flight Testing - Results of the Closing Symposium of the German Research Initiative ComFliTe, Braunschweig,... Computational Flight Testing - Results of the Closing Symposium of the German Research Initiative ComFliTe, Braunschweig, Germany, June 11th-12th, 2012 (Hardcover, 2013 ed.)
Norbert Kroll, Rolf Radespiel, Jan Willem van der Burg, Kaare Sorensen
R4,659 Discovery Miles 46 590 Ships in 12 - 17 working days

This book reports on the German research initiative ComFliTe (Computational Flight Testing), the main goal of which was to enhance the capabilities of and tools for numerical simulation in flight physics to support future aircraft design and development. The initiative was coordinated by the German Aerospace Center (DLR) and promoted collaboration between the aircraft industry and academia. Activities focused on improving physical modeling for separated flows, developing advanced numerical algorithms for series computations and sensitivity predictions, as well as surrogate and reduced order modeling for aero data production and developing robust fluid-, structure- and flight mechanics coupling procedures. Further topics included more efficient handling of aircraft control surfaces and improving simulation methods for maneuvers, such as gust encounter. The important results of this three-year initiative were presented during the ComFliTe closing symposium, which took place at the DLR in Braunschweig, Germany, on 11-12 June 2012. Computational Flight Testing addresses both students and researchers in the areas of mathematics, numerical simulation and optimization methods, as well as professionals in aircraft design working at the forefront of their field.

Heat Transfer of Laminar Mixed Convection of Liquid (Hardcover, 1st ed. 2016): Deyi Shang, Liang-Cai Zhong Heat Transfer of Laminar Mixed Convection of Liquid (Hardcover, 1st ed. 2016)
Deyi Shang, Liang-Cai Zhong
R3,755 R3,315 Discovery Miles 33 150 Save R440 (12%) Ships in 12 - 17 working days

This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convection heat transfer coefficient have strong theoretical and practical value for heat transfer applications because they are created based on a better consideration of variable physical properties of fluids, accurate numerical solutions and rigorous formalization equations combined with rigorous theoretical derivation. This book is suitable for scientific researchers, engineers, professors, master and PhD students of fluid mechanics and convection heat and mass transfer.

Computational Fluid Dynamics 2010 - Proceedings of the Sixth International Conference on Computational Fluid Dynamics, ICCFD6,... Computational Fluid Dynamics 2010 - Proceedings of the Sixth International Conference on Computational Fluid Dynamics, ICCFD6, St Petersburg, Russia, on July 12-16, 2010 (Hardcover, Edition.)
Alexander Kuzmin
R9,987 R8,190 Discovery Miles 81 900 Save R1,797 (18%) Ships in 12 - 17 working days

The International Conference on Computational Fluid Dynamics is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid flow. The proceedings of the 2010 conference (ICCFD6) held in St Petersburg, Russia, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid dynamics.

Nonlinear, Nonlocal and Fractional Turbulence - Alternative Recipes for the Modeling of Turbulence (Hardcover, 1st ed. 2020):... Nonlinear, Nonlocal and Fractional Turbulence - Alternative Recipes for the Modeling of Turbulence (Hardcover, 1st ed. 2020)
Peter William Egolf, Kolumban Hutter
R3,651 Discovery Miles 36 510 Ships in 12 - 17 working days

Experts of fluid dynamics agree that turbulence is nonlinear and nonlocal. Because of a direct correspondence, nonlocality also implies fractionality. Fractional dynamics is the physics related to fractal (geometrical) systems and is described by fractional calculus. Up-to-present, numerous criticisms of linear and local theories of turbulence have been published. Nonlinearity has established itself quite well, but so far only a very small number of general nonlocal concepts and no concrete nonlocal turbulent flow solutions were available. This book presents the first analytical and numerical solutions of elementary turbulent flow problems, mainly based on a nonlocal closure. Considerations involve anomalous diffusion (Levy flights), fractal geometry (fractal- , bi-fractal and multi-fractal model) and fractional dynamics. Examples include a new 'law of the wall' and a generalization of Kraichnan's energy-enstrophy spectrum that is in harmony with non-extensive and non-equilibrium thermodynamics (Tsallis thermodynamics) and experiments. Furthermore, the presented theories of turbulence reveal critical and cooperative phenomena in analogy with phase transitions in other physical systems, e.g., binary fluids, para-ferromagnetic materials, etc.; the two phases of turbulence identifying the laminar streaks and coherent vorticity-rich structures. This book is intended, apart from fluids specialists, for researchers in physics, as well as applied and numerical mathematics, who would like to acquire knowledge about alternative approaches involved in the analytical and numerical treatment of turbulence.

Fluid-Structure-Sound Interactions and Control - Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and... Fluid-Structure-Sound Interactions and Control - Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and Control (Hardcover, 2014 ed.)
Yu Zhou, Yang Liu, Lixi Huang, Dewey H. Hodges
R6,408 Discovery Miles 64 080 Ships in 12 - 17 working days

With rapid economic and industrial development in China, India and elsewhere, fluid-related structural vibration and noise problems are widely encountered in many fields, just as they are in the more developed parts of the world, causing increasingly grievous concerns. Turbulence clearly has a significant impact on many such problems. On the other hand, new opportunities are emerging with the advent of various new technologies, such as signal processing, flow visualization and diagnostics, new functional materials, sensors and actuators, etc. These have revitalized interdisciplinary research activities, and it is in this context that the 2nd symposium on fluid-structure-sound interactions and control (FSSIC) was organized. Held in Hong Kong (May 20-21, 2013) and Macau (May 22-23, 2013), the meeting brought together scientists and engineers working in all related branches from both East and West and provided them with a forum to exchange and share the latest progress, ideas and advances and to chart the frontiers of FSSIC.

"The Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and Control" largely focuses on advances in the theory, experimental research and numerical simulations of turbulence in the contexts of flow-induced vibration, noise and their control. This includes several practical areas for interaction, such as the aerodynamics of road and space vehicles, marine and civil engineering, nuclear reactors and biomedical science etc. One of the particular features of these proceedings is that it integrates acoustics with the study of flow-induced vibration, which is not a common practice but is scientifically very helpful in understanding, simulating and controlling vibration. This offers a broader view of the discipline from which readers will benefit greatly.

These proceedings are intended for academics, research scientists, design engineers and graduate students in engineering fluid dynamics, acoustics, fluid and aerodynamics, vibration, dynamical systems and control etc.

Yu Zhou is a professor in Institute for Turbulence-Noise-Vibration Interaction and Control at Harbin Institute of Technology. Yang Liu is an associate professor at The Hong Kong Polytechnic University. Lixi Huang, associate professor, works at the University of Hong Kong. Professor Dewey H. Hodges works at the School of Aerospace Engineering, Georgia Institute of Technology.

Vortical Flows (Hardcover, 2015 ed.): Jie-Zhi Wu, Hui-Yang Ma, Ming de Zhou Vortical Flows (Hardcover, 2015 ed.)
Jie-Zhi Wu, Hui-Yang Ma, Ming de Zhou
R2,867 Discovery Miles 28 670 Ships in 10 - 15 working days

This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

Summary of Flow Modulation and Fluid-Structure Interaction Findings - Results of the Collaborative Research Center SFB 401 at... Summary of Flow Modulation and Fluid-Structure Interaction Findings - Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany, 1997-2008 (Hardcover, 2010 ed.)
Wolfgang Schroeder
R5,518 Discovery Miles 55 180 Ships in 10 - 15 working days

In this issue of Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) the results of the collaborative research center SFB 401 Flow Modulation and Fluid-Structure Interaction at Airplane Wings at the Rheinisch-Westf. alische Technische Hochschule (RWTH) Aachen University are reported. The funding was provided by the Deutsche Forschungsgeme- schaft (DFG). The research was performed from 1997 through 2008 and on the average consisted of more than 14 subprojects per year. Approximately 110 scientists from universities of the Austria, Belgium, France, Great Britain, Italy, Japan, Netherlands, Russia, South Korea, S- den, Switzerland, United States, and international research organizations such as DLR, NASA, NLR, ONERA were invited. The distinct scientists from all over the world gave seminars on topics related to the research ?elds tackled in the collaborative research center SFB 401. Some of them stayed for just a few days, others were hosted for a longer time to intensify the joint research. Besidesthescienti?cvaluetheFlow Modulation and Fluid-StructureInt- action at Airplane Wings programpossessesapronouncededucationalmerit. This becomes evident by the fact that 35 doctoral theses, 80 diploma theses, and 117 study theses were stimulated by the research program of the SFB 401 and ?nished before 2010. The authors of this issue of NNFM acknowledge the valuable support fromall guestscientists and everybodyscienti?callyinvolvedin the SFB 401.

Aerodynamic Data of Space Vehicles (Hardcover, 2014 ed.): Claus Weiland Aerodynamic Data of Space Vehicles (Hardcover, 2014 ed.)
Claus Weiland
R5,380 Discovery Miles 53 800 Ships in 12 - 17 working days

The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients.

In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators
usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified.

Flight mechanics needs the aerodynamic coefficients as function of a lot of variables. The allocation of the aerodynamic coefficients for a particular flight operation at a specific trajectory point is conducted by an aerodynamic model. The establishment of such models is described in this book.

This book is written for graduate and doctoral students to give them insight into the aerodynamics of the various flight configurations. Further for design and development engineers in industry and at research institutes (including universities) searching for an appropriate vehicle shape, as well as for non-specialists, who may be interested in
this subject. The book will be helpful, too, in the case that system studies require in their concept phases the selection of suitable vehicle shapes.

Theoretical Modelling of Aeroheating on Sharpened Noses Under Rarefied Gas Effects and Nonequilibrium Real Gas Effects... Theoretical Modelling of Aeroheating on Sharpened Noses Under Rarefied Gas Effects and Nonequilibrium Real Gas Effects (Hardcover, 2015 ed.)
Zhihui Wang
R1,447 Discovery Miles 14 470 Ships in 10 - 15 working days

Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects employs a theoretical modeling method to study hypersonic flows and aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effects that are beyond the scope of traditional fluid mechanics. It reveals the nonlinear and nonequilibrium features, discusses the corresponding flow and heat transfer mechanisms, and ultimately establishes an analytical engineering theory framework for hypersonic rarefied and chemical nonequilibrium flows. The original analytical findings presented are not only of great academic significance, but also hold considerable potential for applications in engineering practice. The study explores a viable new approach, beyond the heavily relied-upon numerical methods and empirical formulas, to the present research field, which could be regarded as a successful implementation of the idea and methodology of the engineering sciences.

Dynamics of Non-Spherical Particles in Turbulence (Hardcover, 1st ed. 2020): Luis Blay Esteban Dynamics of Non-Spherical Particles in Turbulence (Hardcover, 1st ed. 2020)
Luis Blay Esteban
R2,791 Discovery Miles 27 910 Ships in 10 - 15 working days

This book studies the dynamics of 2D objects moving through turbulent fluids. It examines the decay of turbulence over extended time scales, and compares the dynamics of non-spherical particles moving through still and turbulent fluids. The book begins with an introduction to the project, its aims, and its relevance for industrial applications. It then discusses the movement of planar particles in quiescent fluid, and presents the numerous methodologies used to measure it. The book also presents a detailed analysis of the falling style of irregular particles, which makes it possible to estimate particle trajectory and wake morphology based on frontal geometry. In turn, the book provides the results of an analysis of physically constrained decaying turbulence in a laboratory setting. These results suggest that large-scale cut-off in numerical simulations can result in severe bias in the computed turbulent kinetic energy for long waiting times. Combining the main text with a wealth of figures and sketches throughout, the book offers an accessible guide for all engineering students with a basic grasp of fluid mechanics, while the key findings will also be of interest to senior researchers.

Control of Turbulent and Magnetohydrodynamic Channel Flows - Boundary Stabilization and State Estimation (Hardcover, 2008 ed.):... Control of Turbulent and Magnetohydrodynamic Channel Flows - Boundary Stabilization and State Estimation (Hardcover, 2008 ed.)
Rafael Vazquez, Miroslav Krstic
R2,915 Discovery Miles 29 150 Ships in 10 - 15 working days

This monograph presents new constructive design methods for boundary stabilization and boundary estimation for several classes of benchmark problems in flow control, with potential applications to turbulence control, weather forecasting, and plasma control. One of the main features of the book is a unique "backstepping" approach to parabolic partial differential equations, which yields not only the stabilization of the flow, but also the explicit solvability of the closed-loop system.

The work is an excellent reference for a broad, interdisciplinary engineering and mathematics audience: control theorists, fluid mechanicists, mechanical engineers, aerospace engineers, chemical engineers, electrical engineers, applied mathematicians, as well as research and graduate students in these fields.

Hydraulic Transients and Computations (Hardcover, 1st ed. 2020): Zh Zhang Hydraulic Transients and Computations (Hardcover, 1st ed. 2020)
Zh Zhang
R4,593 Discovery Miles 45 930 Ships in 12 - 17 working days

This book describes the fundamental phenomena of, and computational methods for, hydraulic transients, such as the self-stabilization effect, restriction of the Joukowsky equation, real relations between the rigid and elastic water column theories, the role of wave propagation speed, mechanism of the attenuation of pressure fluctuations, etc. A new wave tracking method is described in great detail and, supported by the established conservation and traveling laws of shockwaves, offers a number of advantages. The book puts forward a novel method that allows transient flows to be directly computed at each time node during a transient process, and explains the differences and relations between the rigid and elastic water column theories. To facilitate their use in hydropower applications, the characteristics of pumps and turbines are provided in suitable forms and examples. The book offers a valuable reference guide for engineers and scientists, helping them make transient computations for their own programming, while also contributing to the final standardization of methods for transient computations.

Smart Rotor Modeling - Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps (Hardcover, 2014 ed.):... Smart Rotor Modeling - Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps (Hardcover, 2014 ed.)
Leonardo Bergami
R2,793 Discovery Miles 27 930 Ships in 10 - 15 working days

A "smart rotor" is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors featurepromising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.

The book presents the "aero-servo-elastic "model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynamics of an air foil section with flap is presented and coupled with a multi-body structural representation. A smart rotor configuration is proposed, where the Adaptive Trailing Edge Flaps extend along the outer 20 % of the blade span. Linear Quadratic and Model Predictive algorithms are formulated to control the flap deflection.The potential of the smart rotor is finally confirmed by simulations in a turbulent wind field. A significant reduction of the fatigue loads on the blades is reported: the flaps, which cover no more than 1.5 % of the blade surface, reduce the fatigue load by 15 %; a combination of flap and individual pitch control allows for fatigue reductions up to 30 %."

Ejectors for Efficient Refrigeration - Design, Applications and Computational Fluid Dynamics (Hardcover, 1st ed. 2018):... Ejectors for Efficient Refrigeration - Design, Applications and Computational Fluid Dynamics (Hardcover, 1st ed. 2018)
Giuseppe Grazzini, Adriano Milazzo, Federico Mazzelli
R3,906 Discovery Miles 39 060 Ships in 12 - 17 working days

Encompassing both practical applications and recent research developments, this book takes the reader from fundamental physics, through cutting-edge new designs of ejectors for refrigeration. The authors' unique vision marries successful design, system optimization, and operation experience with insights on the application of cutting-edge Computational Fluid Dynamics (CFD) models. This robust treatment leads the way forward in developing improved ejector technologies. The book covers ejectors used for heat powered refrigeration and for expansion work recovery in compression refrigerators, with special emphasis on two-phase flows of "natural" fluids within the ejector, i.e. steam and carbon dioxide. It features worked examples, detailed research results, and analysis tools.

Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics - Volume 2. Relativistic... Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics - Volume 2. Relativistic Theories (Hardcover, 1st ed. 2016)
Byung Chan Eu
R3,719 R3,279 Discovery Miles 32 790 Save R440 (12%) Ships in 12 - 17 working days

This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on nonrelativistic contexts, it provides a comprehensive picture of the relativistic covariant kinetic theory of gases and relativistic hydrodynamics of gases.Relativistic theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids). They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respect to macroscopic fluxes or thermodynamic forces. The irreversible covariant Boltzmann as well as the covariant form of the Boltzmann-Nordheim-Uehling-Uhlenbeck equation is used for deriving theories of irreversible transport equations and generalized hydrodynamic equations for either classical gases or quantum gases. They all conform rigorously to the tenet. All macroscopic observables described by the so-formulated theories therefore are likewise expected to strictly obey the tenet.

Turbulence (Hardcover, 2015 ed.): Christophe Bailly, Genevieve Comte-Bellot Turbulence (Hardcover, 2015 ed.)
Christophe Bailly, Genevieve Comte-Bellot
R3,788 Discovery Miles 37 880 Ships in 12 - 17 working days

This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3 and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarkable digital techniques current and experimental. Many results are presented in a practical way, based on both experiments and numerical simulations. The book is written for a advanced engineering students as well as postgraduate engineers and researchers. For students, it contains the essential results as well as details and demonstrations whose oral transmission is often tedious. At a more advanced level, the text provides numerous references which allow readers to find quickly further study regarding their work and to acquire a deeper knowledge on topics of interest.

Turbomachinery Flow Physics and Dynamic Performance (Hardcover, 2nd ed. 2012): Meinhard T. Schobeiri Turbomachinery Flow Physics and Dynamic Performance (Hardcover, 2nd ed. 2012)
Meinhard T. Schobeiri
R7,202 Discovery Miles 72 020 Ships in 12 - 17 working days

With this second revised and extended edition, the readers have a solid source of information for designing state-of-the art turbomachinery components and systems at hand. Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principles of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes. While maintaining the unifying character of the book structure in this second revised and extended edition all chapters have undergone a rigorous update and enhancement. Accounting for the need of the turbomachinery community, three chapters have been added, that deal with computationally relevant aspects of turbomachinery design such as boundary layer transition, turbulence and boundary layer.

Theory of Heat Transfer with Forced Convection Film Flows (Hardcover, 2011): Deyi Shang Theory of Heat Transfer with Forced Convection Film Flows (Hardcover, 2011)
Deyi Shang
R6,230 R4,282 Discovery Miles 42 820 Save R1,948 (31%) Ships in 12 - 17 working days

Developing a new treatment of 'Free Convection Film Flows and Heat Transfer' began in Shang's first monograph and is continued in this monograph. The current book displays the recent developments of laminar forced convection and forced film condensation. It is aimed at revealing the true features of heat and mass transfer with forced convection film flows to model the deposition of thin layers. The novel mathematical similarity theory model is developed to simulate temperature- and concentration- dependent physical processes. The following topics are covered in this book: 1. Mathematical methods - advanced similarity analysis method to replace the traditional Falkner-Skan type transformation - a novel system of similarity analysis and transformation models to overcome the difficult issues of forced convection and forced film flows - heat and mass transfer equations based on the advanced similarity analysis models and equations formulated with rigorous key numerical solutions 2. Modeling the influence of physical factors - effect of thermal dissipation on forced convection heat transfer - a system of models of temperature and concentration-dependent variable physical properties based on the advanced temperature-parameter model and rigorous analysis model on vapor-gas mixture physical properties for the rigorous and convenient description of the governing differential equations - an available approach to satisfy interfacial matching conditions for rigorous and reliable solutions - a system of numerical results on velocity, temperature and concentration fields, as well as, key solutions on heat and mass transfer - the effect of non-condensable gas on heat and mass transfer for forced film condensation. This way it is realized to conveniently and reliably predict heat and mass transfer for convection and film flows and to resolve a series of current difficult issues of heat and mass transfer with forced convection film flows. Professionals in this fields as well as graduate students will find this a valuable book for their work.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Friction, Lubrication and Wear
Mohammad Asaduzzaman Chowdhury Hardcover R3,483 R3,255 Discovery Miles 32 550
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, … Paperback R1,431 Discovery Miles 14 310
Hydraulic Components Volume A…
Medhat Khalil Hardcover R2,251 Discovery Miles 22 510
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, … Hardcover R6,253 Discovery Miles 62 530
Non-perturbative Methods in Statistical…
Jan Friedrich Hardcover R3,937 Discovery Miles 39 370
Computational Overview of Fluid…
Khaled Ghaedi, Ahmed Alhusseny, … Hardcover R3,463 R3,235 Discovery Miles 32 350
Advances in Microfluidics and Nanofluids
S M Sohel Murshed Hardcover R3,470 R3,242 Discovery Miles 32 420
Thermophysical Properties of Complex…
Aamir Shahzad Hardcover R3,447 R3,219 Discovery Miles 32 190
Fundamental Research and Application of…
Hongliang Luo Hardcover R2,893 R2,713 Discovery Miles 27 130
Essentials of Fluid Dynamics
Fay McGuire Hardcover R3,469 R3,041 Discovery Miles 30 410

 

Partners