![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience."
This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.
This book presents several new findings in the field of turbulent duct flows, which are important for a range of industrial applications. It presents both high-quality experiments and cutting-edge numerical simulations, providing a level of insight and rigour rarely found in PhD theses. The scientific advancements concern the effect of the Earth's rotation on large duct flows, the experimental confirmation of marginal turbulence in a pressure-driven square duct flow (previously only predicted in simulations), the identification of similar marginal turbulence in wall-driven flows using simulations (for the first time by any means) and, on a separate but related topic, a comprehensive experimental study on the phenomenon of drag reduction via polymer additives in turbulent duct flows. In turn, the work on drag reduction resulted in a correlation that provides a quantitative prediction of drag reduction based on a single, measurable material property of the polymer solution, regardless of the flow geometry or concentration. The first correlation of its kind, it represents an important advancement from both a scientific and practical perspective.
The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.
This book surveys significant modern contributions to the mathematical theories of generalized heat wave equations. The first three chapters form a comprehensive survey of most modern contributions also describing in detail the mathematical properties of each model. Acceleration waves and shock waves are the focus in the next two chapters. Numerical techniques, continuous data dependence, and spatial stability of the solution in a cylinder, feature prominently among other topics treated in the following two chapters. The final two chapters are devoted to a description of selected applications and the corresponding formation of mathematical models. Illustrations are taken from a broad range that includes nanofluids, porous media, thin films, nuclear reactors, traffic flow, biology, and medicine, all of contemporary active technological importance and interest. This book will be of value to applied mathematicians, theoretical engineers and other practitioners who wish to know both the theory and its relevance to diverse applications.
The fascinating rainbow colors we see in soap film not only delight us; they also help us understand the physical essence of nature. In this dissertation, the author presents his studies on the interactions between flexible bodies and ambient fluids, a topic reflected in nature, in everyday life and in various industrial applications. By investigating this topic, he reveals the mechanism of flow-induced vibration of flexible bodies, the process of energy exchange between flexible bodies and fluids and the way flexible bodies interact with each other in flowing fluids. These studies not only allow us to understand nature better, but can also help us invent new machines and improve existing devices to glean more energy from nature.
Non-Newtonian flows and their numerical simulations have generated an abundant literature, as well as many publications and references to which can be found in this volume s articles. This abundance of publications can be explained by the fact that non-Newtonian fluids occur in many real life situations: the food industry, oil & gas industry, chemical, civil and mechanical engineering, the bio-Sciences, to name just a few. Mathematical and numerical analysis of non-Newtonian fluid flow models provide challenging problems to partial differential equations specialists and applied computational mathematicians alike. This volume offers investigations. Results and conclusions that
will no doubt be useful to engineers and computational and applied
mathematicians who are focused on various aspects of non-Newtonian
Fluid Mechanics. New review of well-known computational methods for the simulation viscoelastic and viscoplastic types.; Discusses new numerical methods that have proven to be more efficient and more accurate than traditional methods.; Articles that discuss the numerical simulation of particulate flow for viscoelastic fluids.; "
This book treats the derivation and implementation of a unified particle finite element formulation for the solution of fluid and solid mechanics, Fluid-Structure Interaction (FSI) and coupled thermal problems. FSI problems are involved in many engineering branches, from aeronautics to civil and biomedical engineering. The numerical method proposed in this book has been designed to deal with a large part of these. In particular, it is capable of simulating accurately free-surface fluids interacting with structures that may undergo large displacements, suffer from thermo-plastic deformations and even melt. The method accuracy has been successfully verified in several numerical examples. The thesis also contains the application of the proposed numerical strategy for the simulation of a real industrial problem. This thesis, defended at the Universitat Politecnica de Catalunya in 2015, was selected (ex aequo) as the best PhD thesis in numerical methods in Spain for the year 2015 by the Spanish Society of Numerical Methods in Engineering (SEMNI).
This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in energy applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the energy applications. Also, they offer the fundamental knowledge for using CFD in energy applications through new technical approaches. Besides, they describe the CFD process steps and provide benefits and issues for using CFD analysis in understanding the flow complicated phenomena and its use in the design process. The best practices for reducing errors and uncertainties in the CFD analysis are further described. The book reveals not only the recent advances and future research trends of CFD Techniques but also provides the reader with valuable information about energy applications. It aims to provide the readers, such as engineers and PhD students, with the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can take advantage from the information of the book's different chapters.
These proceedings primarily focus on advances in the theory, experiments, and numerical simulations of turbulence in the contexts of flow-induced vibration and noise, as well as their control. Fluid-related structural vibration and noise problems are often encountered in many engineering fields, increasingly making them a cause for concern. The FSSIC conference, held on 5-9 July 2015 in Perth, featured prominent keynote speakers such as John Kim, Nigel Peake, Song Fu and Colin Hansen, as well as talks on a broad range of topics: turbulence, fluid-structure interaction, fluid-related noise and the control/management aspects of these research areas, many of which are clearly interdisciplinary in nature. It provided a forum for academics, scientists and engineers working in all branches of Fluid-Structure-Sound Interactions and Control (FSSIC) to exchange and share the latest developments, ideas and advances, bringing them together researchers from East and West to push forward the frontiers of FSSIC, ensuring that the proceedings will be of interest to a broad engineering community.
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors' field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.
Fluid turbulence is often referred to as `the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of energy transfer, and the fundamental problems inherent in numerical simulation. Part 3 deals with renormalization methods, with an emphasis on the taxonomy of the subject, rather than on lengthy mathematical derivations. The book concludes with some discussion of current lines of research and is supplemented by three appendices containing detailed mathematical treatments of the effect of isotropy on correlations, the properties of Gaussian distributions, and the evaluation of coefficients in statistical theories.
Viscous flow is treated usually in the frame of boundary-layer theory and as two-dimensional flow. Books on boundary layers give at most the describing equations for three-dimensional boundary layers, and solutions often only for some special cases. This book provides basic principles and theoretical foundations regarding three-dimensional attached viscous flow. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers. This wider scope is necessary in view of the theoretical and practical problems to be mastered in practice. The topics are weak, strong, and global interaction, the locality principle, properties of three-dimensional viscous flow, thermal surface effects, characteristic properties, wall compatibility conditions, connections between inviscid and viscous flow, flow topology, quasi-one- and two-dimensional flows, laminar-turbulent transition and turbulence. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice. The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility conditions; connections between inviscid and viscous flows; flow topology; quasi-one- and two-dimensional flows; laminar-turbulent transition; and turbulence. Detailed discussions of examples illustrate these topics and the relevant phenomena encountered in three-dimensional viscous flows. The full governing equations, reference-temperature relations for qualitative considerations and estimations of flow properties, and coordinates for fuselages and wings are also provided. Sample problems with solutions allow readers to test their understanding.
The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.
Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author's experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ensure that the content is clear, representative but also interesting the text is complimented by a range of relevant graphs and photographs including representative engineering, in addition to several propeller performance charts. These items provide excellent reference and support materials for graduate and undergraduate projects and exercises. Students in the field of aerospace engineering will find that Powered Flight - The Engineering of Aerospace Propulsion supports their studies from the introductory stage and throughout more intensive follow-on studies.
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
This volume contains the contributions to the 17th Symposium of STAB (German Aerospace Aerodynamics Association). STAB includes German scientists and engineers from universities, research establishments and industry doing research and project work in numerical and experimental fluid mechanics and aerodynamics, mainly for aerospace but also for other applications. Many of the contributions collected in this book present results from national and European Community sponsored projects. This volume gives a broad overview of the ongoing work in this field in Germany and spans a wide range of topics: airplane aerodynamics, multidisciplinary optimization and new configurations, hypersonic flows and aerothermodynamics, flow control (drag reduction and laminar flow control), rotorcraft aerodynamics, aeroelasticity and structural dynamics, numerical simulation, experimental simulation and test techniques, aeroacoustics as well as the new fields of biomedical flows, convective flows, aerodynamics and acoustics of high-speed trains.
This book reports on the German research initiative ComFliTe (Computational Flight Testing), the main goal of which was to enhance the capabilities of and tools for numerical simulation in flight physics to support future aircraft design and development. The initiative was coordinated by the German Aerospace Center (DLR) and promoted collaboration between the aircraft industry and academia. Activities focused on improving physical modeling for separated flows, developing advanced numerical algorithms for series computations and sensitivity predictions, as well as surrogate and reduced order modeling for aero data production and developing robust fluid-, structure- and flight mechanics coupling procedures. Further topics included more efficient handling of aircraft control surfaces and improving simulation methods for maneuvers, such as gust encounter. The important results of this three-year initiative were presented during the ComFliTe closing symposium, which took place at the DLR in Braunschweig, Germany, on 11-12 June 2012. Computational Flight Testing addresses both students and researchers in the areas of mathematics, numerical simulation and optimization methods, as well as professionals in aircraft design working at the forefront of their field.
With rapid economic and industrial development in China, India and elsewhere, fluid-related structural vibration and noise problems are widely encountered in many fields, just as they are in the more developed parts of the world, causing increasingly grievous concerns. Turbulence clearly has a significant impact on many such problems. On the other hand, new opportunities are emerging with the advent of various new technologies, such as signal processing, flow visualization and diagnostics, new functional materials, sensors and actuators, etc. These have revitalized interdisciplinary research activities, and it is in this context that the 2nd symposium on fluid-structure-sound interactions and control (FSSIC) was organized. Held in Hong Kong (May 20-21, 2013) and Macau (May 22-23, 2013), the meeting brought together scientists and engineers working in all related branches from both East and West and provided them with a forum to exchange and share the latest progress, ideas and advances and to chart the frontiers of FSSIC. "The Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and Control" largely focuses on advances in the theory, experimental research and numerical simulations of turbulence in the contexts of flow-induced vibration, noise and their control. This includes several practical areas for interaction, such as the aerodynamics of road and space vehicles, marine and civil engineering, nuclear reactors and biomedical science etc. One of the particular features of these proceedings is that it integrates acoustics with the study of flow-induced vibration, which is not a common practice but is scientifically very helpful in understanding, simulating and controlling vibration. This offers a broader view of the discipline from which readers will benefit greatly. These proceedings are intended for academics, research scientists, design engineers and graduate students in engineering fluid dynamics, acoustics, fluid and aerodynamics, vibration, dynamical systems and control etc. Yu Zhou is a professor in Institute for Turbulence-Noise-Vibration Interaction and Control at Harbin Institute of Technology. Yang Liu is an associate professor at The Hong Kong Polytechnic University. Lixi Huang, associate professor, works at the University of Hong Kong. Professor Dewey H. Hodges works at the School of Aerospace Engineering, Georgia Institute of Technology.
The International Conference on Computational Fluid Dynamics is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid flow. The proceedings of the 2010 conference (ICCFD6) held in St Petersburg, Russia, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid dynamics.
In this issue of Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) the results of the collaborative research center SFB 401 Flow Modulation and Fluid-Structure Interaction at Airplane Wings at the Rheinisch-Westf. alische Technische Hochschule (RWTH) Aachen University are reported. The funding was provided by the Deutsche Forschungsgeme- schaft (DFG). The research was performed from 1997 through 2008 and on the average consisted of more than 14 subprojects per year. Approximately 110 scientists from universities of the Austria, Belgium, France, Great Britain, Italy, Japan, Netherlands, Russia, South Korea, S- den, Switzerland, United States, and international research organizations such as DLR, NASA, NLR, ONERA were invited. The distinct scientists from all over the world gave seminars on topics related to the research ?elds tackled in the collaborative research center SFB 401. Some of them stayed for just a few days, others were hosted for a longer time to intensify the joint research. Besidesthescienti?cvaluetheFlow Modulation and Fluid-StructureInt- action at Airplane Wings programpossessesapronouncededucationalmerit. This becomes evident by the fact that 35 doctoral theses, 80 diploma theses, and 117 study theses were stimulated by the research program of the SFB 401 and ?nished before 2010. The authors of this issue of NNFM acknowledge the valuable support fromall guestscientists and everybodyscienti?callyinvolvedin the SFB 401.
Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects employs a theoretical modeling method to study hypersonic flows and aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effects that are beyond the scope of traditional fluid mechanics. It reveals the nonlinear and nonequilibrium features, discusses the corresponding flow and heat transfer mechanisms, and ultimately establishes an analytical engineering theory framework for hypersonic rarefied and chemical nonequilibrium flows. The original analytical findings presented are not only of great academic significance, but also hold considerable potential for applications in engineering practice. The study explores a viable new approach, beyond the heavily relied-upon numerical methods and empirical formulas, to the present research field, which could be regarded as a successful implementation of the idea and methodology of the engineering sciences.
This monograph presents new constructive design methods for boundary stabilization and boundary estimation for several classes of benchmark problems in flow control, with potential applications to turbulence control, weather forecasting, and plasma control. One of the main features of the book is a unique "backstepping" approach to parabolic partial differential equations, which yields not only the stabilization of the flow, but also the explicit solvability of the closed-loop system. The work is an excellent reference for a broad, interdisciplinary engineering and mathematics audience: control theorists, fluid mechanicists, mechanical engineers, aerospace engineers, chemical engineers, electrical engineers, applied mathematicians, as well as research and graduate students in these fields.
A "smart rotor" is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors featurepromising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors. The book presents the "aero-servo-elastic "model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynamics of an air foil section with flap is presented and coupled with a multi-body structural representation. A smart rotor configuration is proposed, where the Adaptive Trailing Edge Flaps extend along the outer 20 % of the blade span. Linear Quadratic and Model Predictive algorithms are formulated to control the flap deflection.The potential of the smart rotor is finally confirmed by simulations in a turbulent wind field. A significant reduction of the fatigue loads on the blades is reported: the flaps, which cover no more than 1.5 % of the blade surface, reduce the fatigue load by 15 %; a combination of flap and individual pitch control allows for fatigue reductions up to 30 %." |
You may like...
Very High Angular Resolution Imaging…
J.G. Robertson, W.J. Tango
Hardcover
R5,232
Discovery Miles 52 320
Intelligence of Apes and Other Rational…
Duane M. Rumbaugh, David A. Washburn
Hardcover
R1,905
Discovery Miles 19 050
Explaining Lithium Enriched Red Giant…
Claudia Aguilera-Gomez
Hardcover
R2,653
Discovery Miles 26 530
Informants, Cooperating Witnesses, and…
Simon Coffey, Dennis G Fitzgerald
Paperback
R2,413
Discovery Miles 24 130
Emotional Intelligence - Perspectives on…
Jerrell C Cassady, Mourad Ali Eissa
Hardcover
R2,610
Discovery Miles 26 100
|