Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics
This book is dedicated to the recent developments in RET with the aim to explore polyatomic gas, dense gas and mixture of gases in non-equilibrium. In particular we present the theory of dense gases with 14 fields, which reduces to the Navier-Stokes Fourier classical theory in the parabolic limit. Molecular RET with an arbitrary number of field-variables for polyatomic gases is also discussed and the theory is proved to be perfectly compatible with the kinetic theory in which the distribution function depends on an extra variable that takes into account a molecule's internal degrees of freedom. Recent results on mixtures of gases with multi-temperature are presented together with a natural definition of the average temperature. The qualitative analysis and in particular, the existence of the global smooth solution and the convergence to equilibrium are also studied by taking into account the fact that the differential systems are symmetric hyperbolic. Applications to shock and sound waves are analyzed together with light scattering and heat conduction and the results are compared with experimental data. Rational extended thermodynamics (RET) is a thermodynamic theory that is applicable to non-equilibrium phenomena. It is described by differential hyperbolic systems of balance laws with local constitutive equations. As RET has been strictly related to the kinetic theory through the closure method of moment hierarchy associated to the Boltzmann equation, the applicability range of the theory has been restricted within rarefied monatomic gases. The book represents a valuable resource for applied mathematicians, physicists and engineers, offering powerful models for potential applications like satellites reentering the atmosphere, semiconductors and nano-scale phenomena.
This book describes novel microtechnologies and integration strategies for developing a new class of assay systems to retrieve desired health information from patients in real-time. The selection and integration of sensor components and operational parameters for developing point-of-care (POC) are also described in detail. The basics that govern the microfluidic regimen and the techniques and methods currently employed for fabricating microfluidic systems and integrating biosensors are thoroughly covered. This book also describes the application of microfluidics in the field of cell and molecular biology, single cell biology, disease diagnostics, as well as the commercially available systems that have been either introduced or have the potential of being used in research and development. This is an ideal book for aiding biologists in understanding the fundamentals and applications of microfluidics. This book also: Describes the preparatory methods for developing 3-dimensional microfluidic structures and their use for Lab-on-a-Chip design Explains the significance of miniaturization and integration of sensing components to develop wearable sensors for point-of-care (POC) Demonstrates the application of microfluidics to life sciences and analytical chemistry, including disease diagnostics and separations Motivates new ideas related to novel platforms, valving technology, miniaturized transduction methods, and device integration to develop next generation sequencing Discusses future prospects and challenges of the field of microfluidics in the areas of life sciences in general and diagnostics in particular
Modern experiments and numerical simulations show that the long-known coherent structures in turbulence take the form of elongated vortex tubes and vortex sheets. The evolution of vortex tubes may result in spiral structures which can be associated with the spectral power laws of turbulence. The mutual stretching of skewed vortex tubes, when they are close to each other, causes rapid growth of vorticity. Whether this process may or may not lead to a finite-time singularity is one of the famous open problems of fluid dynamics. This book contains the proceedings of the NATO ARW and IUTAM Symposium held in Zakopane, Poland, 2-7 September 2001. The papers presented, carefully reviewed by the International Scientific Committee, cover various aspects of the dynamics of vortex tubes and sheets and of their analogues in magnetohydrodynamics and in quantum turbulence. The book should be a useful reference for all researchers and students of modern fluid dynamics.
The "Turbulence and Interactions 2006" (TI2006) conference was held on the island of Porquerolles, France, May 29-June 2, 2006. The scientific sponsors of the conference were * Association Francaise de Mecanique, * CD-adapco, * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * FLUENT, * The French Ministery of Foreign Affairs, * Laboratoire de Modelisation en Mecanique, Paris 6, * ONERA. The conference was a unique event. Never before have so many organisations concerned with turbulence works come together in one conference. As the title "Turbulence and Interactions" anticipated, the workshop was not run with parallel sessions but instead of one united gathering where people had strong interactions and discussions. Many of the 85 or so attendants were veterans of previous ERCOFTAC conferences. Some young researchers attended their very first int- national meeting. The organisers were fortunate in obtaining the presence of the following - vited speakers: N. Adams (TUM, Germany), C. Cambon (ECL, France), J.-P. Dussauge (Polytech Marseille, France), D.A. Gosman (Imperial College, UK), Y. Kaneda (Nagoya University, Japan), O. Simonin (IMFT, France), G. Tryggvason (WPI, USA), D. Veynante (ECP, France), F. Waleffe (University of Wisconsin, USA), Y.K. Zhou (University of California, USA). The topics covered by the 59 papers ranged from experimental results through theory to computations. The papers of the conference went through the usual - viewing process for two special issues of international journals : Computers and Fluids, and Flow, Turbulence and Combustion.
Intended to provide an up-to-date overview of the field, this book is also likely to become a standard work of reference on the science of droplets. Beginning with the theoretical background important for droplet dynamics, it continues with a presentation of the various methods for generating single droplets and regular droplet systems. Also included is a detailed description of the experimental methods employed in droplet research. A special chapter is devoted to the various types of droplet interactions without phase transition. A separate chapter then treats many examples of the possible phase transition processes. The final part of the book gives a summary of important applications. With its comprehensive content, this book will be of interest to all scientists and lecturers concerned with two-phase flow, spray technology, heterogeneous combustion, and aerosol science.
This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion on Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.
Magnetic control of the properties and the flow of liquids is a challenging field for basic research and for applications. This book is meant to be both an introduction to, and a state-of-the-art review of, this topic. Written in the form of a set of lectures and tutorial reviews, the book addresses the synthesis and characterization of magnetic fluids, their hydrodynamical description and their rheological properties. The book closes with an account of magnetic drug targeting.
This book presents new methods of numerical modelling of tube heat exchangers, which can be used to perform design and operation calculations of exchangers characterized by a complex flow system. It also proposes new heat transfer correlations for laminar, transition and turbulent flows. A large part of the book is devoted to experimental testing of heat exchangers, and methods for assessing the indirect measurement uncertainty are presented. Further, it describes a new method for parallel determination of the Nusselt number correlations on both sides of the tube walls based on the nonlinear least squares method and presents the application of computational fluid dynamic (CFD) modeling to determine the air-side Nusselt number correlations. Lastly, it develops a control system based on the mathematical model of the car radiator and compares this with the digital proportional-integral-derivative (PID) controller. The book is intended for students, academics and researchers, as well as for designers and manufacturers of heat exchangers.
This book gathers the proceedings of the Fifth Symposium on Hybrid RANS-LES Methods, which was held on March 19-21 in College Station, Texas, USA. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.
This supplement to the comprehensive series "Encyclopedia of Fluid Mechanics" steps back from the topical approach to fluid mechanics, and embraces the overall subject from an entirely mathematical viewpoint. Within the pure science of mathematics, the motion of particles and fluids is described and studies without the uncertainty that can accompany experimental investigations. This volume addresses the mathematical details of model formation and development, which constitutes the basis for numerical experimentation. It is intended to stimulate and report current and emerging concepts in pure research on flow dynamics.
This book is concerned with the prediction of thermodynamic and transport properties of gases and liquids. The prediction of such properties is essential for the solution of many problems encountered in chemical and process engineering as well as in other areas of science and technology. The book aims to present the best of those modern methods which are capable of practical application. It begins with basic scientific principles and formal results which are subsequently developed into practical methods of prediction. Numerous examples, supported by a suite of computer programmes, illustrate applications of the methods. The book is aimed primarily at the student market (for both undergraduate and taught postgraduate courses) but it will also be useful for those engaged in research and for chemical and process engineering professionals.
This book is concerned with the prediction of thermodynamic and transport properties of gases and liquids. The prediction of such properties is essential for the solution of many problems encountered in chemical and process engineering as well as in other areas of science and technology. The book aims to present the best of those modern methods which are capable of practical application. It begins with basic scientific principles and formal results which are subsequently developed into practical methods of prediction. Numerous examples, supported by a suite of computer programmes, illustrate applications of the methods. The book is aimed primarily at the student market (for both undergraduate and taught postgraduate courses) but it will also be useful for those engaged in research and for chemical and process engineering professionals.
This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in confined geometries driven by an applied temperature gradient play an important role in a range of applications, including thermal management, such as heat pipes, thermosyphons, capillary pumped loops and other evaporative cooling devices. Previously, this problem has been addressed using a piecemeal approach that relied heavily on correlations and unproven assumptions, and the science and technology behind heat pipes have barely evolved in recent decades. The model introduced in this thesis, however, presents a comprehensive physically based description of both the liquid and the gas phase. The model has been implemented numerically and successfully validated against the available experimental data, and the numerical results are used to determine the key physical processes that control the heat and mass flow and describe the flow stability. One of the key contributions of this thesis work is the description of the role of noncondensables, such as air, on transport. In particular, it is shown that many of the assumptions used by current engineering models of evaporative cooling devices are based on experiments conducted at atmospheric pressures, and these assumptions break down partially or completely when most of the noncondensables are removed, requiring a new modeling approach presented in the thesis. Moreover, Numerical solutions are used to motivate and justify a simplified analytical description of transport in both the liquid and the gas layer, which can be used to describe flow stability and determine the critical Marangoni number and wavelength describing the onset of the convective pattern. As a result, the results presented in the thesis should be of interest both to engineers working in heat transfer and researchers interested in fluid dynamics and pattern formation.
What do combustion engines, fusion reactors, weather forecast, ocean ?ows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly di?erent in all cases, but it is alsowellknownthatinallofthem,onsomerelevantlengthscales,thematerial ?ows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. In fact, the term "turbulence" is used for an enormous variety of p- nomena in very di?erent ?elds, including geophysics, astrophysics, and - gineering. Unfortunately, these communities do not talk to each other too often. Therefore, back in 2005, we organized a workshop on "Interdis- plinary Aspects of Turbulence" at the Ringberg Castle in the Bavarian Alps, to discuss topics such as the basic concepts of turbulence, the di?- ent approaches of modelling and simulations used in the various areas, and also possible tests. This workshop was a great success and the proceedings can be found on the Internet (www.mpa-garching.mpg.de/mpa/publications/ proceedings/proceedings-en.html) as well as pdf-?les of several of the talks presented (www.mpa-garching. mpg.de/hydro/Turbulence/).
This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.
This book presents recent progress in the application of RANS turbulence models based on the Reynolds stress transport equations. A variety of models has been implemented by different groups into different flow solvers and applied to external as well as to turbo machinery flows. Comparisons between the models allow an assessment of their performance in different flow conditions. The results demonstrate the general applicability of differential Reynolds stress models to separating flows in industrial aerodynamics.
|
You may like...
Applications of Computational Fluid…
Suvanjan Bhattacharyya
Hardcover
Friction, Lubrication and Wear
Mohammad Asaduzzaman Chowdhury
Hardcover
Computational Overview of Fluid…
Khaled Ghaedi, Ahmed Alhusseny, …
Hardcover
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,253
Discovery Miles 62 530
Solving Problems in Fluid Mechanics…
J.F. Douglas, R D Matthews
Paperback
R2,377
Discovery Miles 23 770
|