![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics
The emphasis of this book is on engineering aspects of fluid turbulence. The book explains for example how to tackle turbulence in industrial applications. It is useful to several disciplines, such as, mechanical, civil, chemical, aerospace engineers and also to professors, researchers, beginners, under graduates and post graduates. The following issues are emphasized in the book: - Modeling and computations of engineering flows: The author discusses in detail the quantities of interest for engineering turbulent flows and how to select an appropriate turbulence model; Also, a treatment of the selection of appropriate boundary conditions for the CFD simulations is given. - Modeling of turbulent convective heat transfer: This is encountered in several practical situations. It basically needs discussion on issues of treatment of walls and turbulent heat fluxes. - Modeling of buoyancy driven flows, for example, smoke issuing from chimney, pollutant discharge into water bodies, etc
This volume will contain selected papers from the lectures held at the BAIL 2010 Conference, which took place from July 5th to 9th, 2010 in Zaragoza (Spain). The papers present significant advances in the modeling, analysis and construction of efficient numerical methods to solve boundary and interior layers appearing in singular perturbation problems. Special emphasis is put on the mathematical foundations of such methods and their application to physical models. Topics in scientific fields such as fluid dynamics, quantum mechanics, semiconductor modeling, control theory, elasticity, chemical reactor theory, and porous media are examined in detail.
This volume contains the papers of a German Symposium dealing with research and project work in numerical and experimental aerodynamics and fluidmechanics for aerospace and other applications. Results are reported from universities, research-establishments and industry. It therefore gives a broad overview over the ongoing work in this field in Germany.
As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated."
The priority research, Analysis, Modelling and Numerical Calculations ofMul tiphase Flows" was running for 6 years (from 1996 to 2002) and financially sup ported by the Deutsche Forschungsgemeinschaft (DFG). The main objective ofthe research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and bio chemical reactors. The research comprised steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, loop reactors, and aerated stirred vessels. For this purpose, new and im proved measurement techniques should be developed. From the resulting knowl edge and data, new and refined models for describing the underlying physical processes should result, which can be used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up ofsuch processes should be pos sible on a more reliable basis. For achieving this objective three research areas were defined: development and improvement of experimental techniques which allow accu rate measurements in steady and unsteady multiphase flows elaboration of new modelling approaches in order to describe the basic trans port processes for mass, momentum, and heat in bubbly flows development of analytical and numerical methods supplemented by the new modelling strategies in order to support optimisation and lay-out of technical multiphase processes."
This book covers the basics of the hydrodynamics and vibration of structures subjected to environmental loads. It describes the interaction of hydrodynamics with the associated vibration of structures, giving simple explanations. Emphasis is placed on the applications of the theory to practical problems. Several case studies are provided to show how the theory outlined in the book is applied in the design of structures. Background material needed for understanding fluid-induced vibrations of structures is given to make the book reasonably self-sufficient. Examples are taken mainly from the novel structures that are of interest today, including ocean and offshore structures and components.Besides being a text for undergraduates, this book can serve as a handy reference for design engineers and consultants involved in the design of structures subjected to dynamics and vibration.
This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.
Fluids, play an important role in environmental systems, appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport in addition to deformation processes in subsurface systems. In this textbook the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations and its object-oriented computer implementation are discussed and illustrated with examples. Finally the application of computer models in civil and environmental engineering is demonstrated.
The volume is devoted to the dynamics of rods, which is a branch of mech- ics of deformable bodies. The main goal of the book is to present systema- cally theoretical fundamentals of the mechanics of rods as well as numerical methods used for practical purposes. Linear and nonlinear equations governing a rod's oscillations are p- sented. Methods of determining eigenvalues and eigenfunctions in conser- tive and non-conservative problems along with numerical methods dealing with forced, parametric, and random oscillations of rods are given. Some - sues of interaction of rods with air (liquid) flows and the dynamics of spa- curved rods containing flows of liquid are considered. The book consists of nine chapters and appendices and may be conv- tionally divided into two parts. That is, Chapters 1 to 6 contain, in the main, theoretical material, whereas Chapters 7 to 9 illustrate the application of the theoretical results to problems of practical interest. Problems for self-study are found in Chapters 3, 5, and 7. The solutions to most of the problems are given in Appendix B. The monograph is addressed to undergraduate and postgraduate students and teaching staff of technical universities. It may also be useful for scientists and mechanical engineers working in a wide range of industries. I wish to express my deep appreciation to my colleagues, Dr. S.A. Voronov and C.B. Danilenko, for their help in preparing the manuscript.
The Handbook of Mathematical Fluid Dynamics is a compendium of
essays that provides a survey of the major topics in the subject.
Each article traces developments, surveys the results of the past
decade, discusses the current state of knowledge and presents major
future directions and open problems. Extensive bibliographic
material is provided. The book is intended to be useful both to
experts in the field and to mathematicians and other scientists who
wish to learn about or begin research in mathematical fluid
dynamics. The Handbook illuminates an exciting subject that
involves rigorous mathematical theory applied to an important
physical problem, namely the motion of fluids.
The present volume celebrates the 60th birthday of Professor Giovanni Paolo Galdi and honors his remarkable contributions to research in the ?eld of Mathematical Fluid Mechanics. The book contains a collection of 35 peer reviewed papers, with authors from 20 countries, re?ecting the worldwide impact and great inspiration by his work over the years. These papers were selected from invited lectures and contributed talks presented at the International Conference on Mathematical Fluid Mechanics held in Estoril, Portugal, May 21-25, 2007 and organized on the oc- sion of Professor Galdi's 60th birthday. We express our gratitude to all the authors and reviewers for their important contributions. Professor Galdi devotes his career to research on the mathematical analysis of the Navier-Stokes equations and non-Newtonian ?ow problems, with special emphasis on hydrodynamic stability and ?uid-particle interactions, impressing the worldwide mathematical communities with his results. His numerous contributions have laid down signi?cant milestones in these ?elds, with a great in?uence on interdis- plinary research communities. He has advanced the careers of numerous young researchers through his generosity and encouragement, some directly through int- lectual guidance and others indirectly by pairing them with well chosen senior c- laborators. A brief review of Professor Galdi's activities and some impressions by colleagues and friends are included here.
This thesis presents a study of strong stratification and turbulence collapse in the planetary boundary layer, opening a new avenue in this field. It is the first work to study all regimes of stratified turbulence in a unified simulation framework without a break in the paradigms for representation of turbulence. To date, advances in our understanding and the parameterization of turbulence in the stable boundary layer have been hampered by difficulties simulating the strongly stratified regime, and the analysis has primarily been based on field measurements. The content presented here changes that paradigm by demonstrating the ability of direct numerical simulation to address this problem, and by doing so to remove the uncertainty of turbulence models from the analysis. Employing a stably stratified Ekman layer as a simplified physical model of the stable boundary layer, the three stratification regimes observed in nature- weakly, intermediately and strongly stratified-are reproduced, and the data is subsequently used to answer key, long-standing questions. The main part of the book is organized in three sections, namely a comprehensive introduction, numerics, and physics. The thesis ends with a clear and concise conclusion that distills specific implications for the study of the stable boundary layer. This structure emphasizes the physical results, but at the same time gives relevance to the technical aspects of numerical schemes and post-processing tools. The selection of the relevant literature during the introduction, and its use along the work appropriately combines literature from two research communities: fluid dynamics, and boundary-layer meteorology.
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.
Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur under shock loading of liquids and may be of interest to researchers in physical acoustics, mechanics of multiphase media, shock-wave processes in condensed media, explosive hydroacoustics, and cumulation.
Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.
The book deals with the development of continual models of turbulent natural media. Such models serve as a ground for the statement and numerical evaluation of the key problems of the structure and evolution of the numerous astrophysical and geophysical objects. The processes of ordering (self-organization) in an originally chaotic turbulent medium are addressed and treated in detail with the use of irreversible thermodynamics and stochastic dynamics approaches which underlie the respective models. Different examples of ordering set up in the natural environment and outer space are brought and thoroughly discussed, the main focus being given to the protoplanetary discs formation and evolution.
This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the "Shock Wave Science and Technology Reference Library" presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.
This book is drawn from across many active fields of mathematics and physics. It has connections to atmospheric dynamics, spherical codes, graph theory, constrained optimization problems, Markov Chains, and Monte Carlo methods. It addresses how to access interesting, original, and publishable research in statistical modeling of large-scale flows and several related fields. The authors explicitly reach around the major branches of mathematics and physics, showing how the use of a few straightforward approaches can create a cornucopia of intriguing questions and the tools to answer them.
This text is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter introduces with progressively increasing detail, the fundamental concepts of plasma physic. The motion of individual charged particles in various configurations of electric and magnetic fields is detailed in the second chapter while the third chapter considers the collective motion of the plasma particles described according to a hydrodynamic model. The fourth chapter is most original in that it introduces a general approach to energy balance, valid for all types of discharges comprising direct current(DC) and high frequency (HF) discharges, including an applied static magnetic field. The basic concepts required in this fourth chapter have been progressively introduced in the previous chapters. The text is enriched with approx. 100 figures, and alphabetical index and 45 fully resolved problems. Mathematical and physical appendices provide complementary information or allow to go deeper in a given subject.
This book is designed to: Provide students with the tools to model, analyze and solve a wide range of engineering applications involving conduction heat transfer. Introduce students to three topics not commonly covered in conduction heat transfer textbooks: perturbation methods, heat transfer in living tissue, and microscale conduction. Take advantage of the mathematical simplicity of o- dimensional conduction to present and explore a variety of physical situations that are of practical interest. Present textbook material in an efficient and concise manner to be covered in its entirety in a one semester graduate course. Drill students in a systematic problem solving methodology with emphasis on thought process, logic, reasoning and verification. To accomplish these objectives requires judgment and balance in the selection of topics and the level of details. Mathematical techniques are presented in simplified fashion to be used as tools in obtaining solutions. Examples are carefully selected to illustrate the application of principles and the construction of solutions. Solutions follow an orderly approach which is used in all examples. To provide consistency in solutions logic, I have prepared solutions to all problems included in the first ten chapters myself. Instructors are urged to make them available electronically rather than posting them or presenting them in class in an abridged form.
The book provides a broad overview of the full spectrum of state-of-the-art computational activities in multiphase flow as presented by top practitioners in the field. Starting with well-established approaches (point-particle models, volume-of-fluid, level set, and front capturing for free-surface flows) it builds up to newer methods for large-eddy simulations, extended particles in Navier-Stokes flows, the lattice-Boltzmann method, molecular dynamics techniques and compressible flows with shock waves. These methods are illustrated with applications to a broad spectrum of problems involving particle dispersion and deposition, turbulence modulation, environmental flows, fluidized beds, bubbly flows, and many others.
This volume contains the proceedings of the IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, held at Nagoya University, Nagoya, Japan, in September 2006. Leading experts in turbulence research were brought together at this Symposium to exchange ideas and discuss, in the light of the recent progress in computational methods, new perspectives in our understanding of turbulence. Special emphasis was given to fundamental aspects of the physics of turbulence. The subjects discussed here cover: computational physics and the theory of canonical turbulent flows; experimental approaches to fundamental problems in turbulence; turbulence modeling and numerical methods; and geophysical and astrophysical turbulence. This work should be useful to graduate students and researchers interested in fundamental aspects of turbulence.
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors |
You may like...
Don't Give Up, Don't Give In - Life…
Louis Zamperini, David Rensin
Paperback
(2)
Computer Vision in Control Systems-6…
Margarita N. Favorskaya, Lakhmi C. Jain
Hardcover
R2,653
Discovery Miles 26 530
Advanced Topics on Computer Vision…
Osslan Osiris Vergara Villegas, Manuel Nandayapa, …
Hardcover
R4,306
Discovery Miles 43 060
Grit - Why Passion & Resilience Are The…
Angela Duckworth
Paperback
(3)
Machine Learning for Computer Vision
Roberto Cipolla, Sebastiano Battiato, …
Hardcover
R2,675
Discovery Miles 26 750
|