![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics
This book is a complete revision of the part of Monin & Yaglom's famous two-volume work "Statistical Fluid Mechanics: Mechanics of Turbulence" that deals with the theory of laminar-flow instability and transition to turbulence. It includes the considerable advances in the subject that have been made in the last 15 years or so. It is intended as a textbook for advanced graduate courses and as a reference for research students and professional research workers. The first two Chapters are an introduction to the mathematics, and the experimental results, for the instability of laminar (or inviscid) flows to infinitesimal (in practice "small") disturbances. The third Chapter develops this linear theory in more detail and describes its application to particular problems. Chapters 4 and 5 deal with instability to finite-amplitude disturbances: much of the material has previously been available only in research papers."
The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.
Microfluidics and Microfabrication discusses the interconnect between microfluidics, microfabrication and the life sciences. Specifically, this includes fundamental aspects of fluid mechanics in micro-scale and nano-scale confinements and microfabrication. Material is also presented discussing micro-textured engineered surfaces, high-performance AFM probe-based, micro-grooving processes, fabrication with metals and polymers in bio-micromanipulation and microfluidic applications. Editor Suman Chakraborty brings together leading minds in both fields who also:
Microfluidics and Microfabrication is an ideal book for researchers, engineers and senior-level graduate students interested in learning more about the two fields.
In this book of reminiscences, this prize-winning Russian physicist presents a sweeping discourse on scientific achievement from the thirties to the present day. On the basis of his own work and that of leading international scientists such as P. L. Kapitza, L. Landau, R. Feynman and J. Bardeen, the author recounts the establishment and development of the superfluidity of liquid helium and quantum hydrodynamics. In an interesting and readable style, E. L. Andronikashvili speaks of the scientific quest and the human interrelationships that accompany scientific creativity. For historians of science and physicists.
Some words about SCART 2000. SCART stands for science and art. SCART meetings are organized in a loose time sequence by an international group of scientists, most of them fluid-dynamicists. The first meeting was held in Hong-Kong, the second one in Berlin, and the third, and latest, one in Zurich. SCART meetings include a scientific conference and a number of art events. The intention is to restart a dialogue between scientists and artists which was so productive in the past. To achieve this goal several lectures given by scientists at the conference are intended for a broader public. In the proceedings they are denoted as SCART lectures. The artists in tum address the main theme of the conference with their contributions. The lectures at SCART 2000 covered the entire field of fluiddynamics, from laminar flows in biological systems to astrophysical events, such as the explosion of a neutron star. The main exhibition by Dutch and Swiss artists showed video and related art under the title 'Walking on Air'. Experimental music was performed in two concerts.
Physically correct boundary conditions on vapor-liquid interfaces are essential in order to make an analysis of flows of a liquid including bubbles or of a gas including droplets. Suitable boundary conditions do not exist at the present time. This book is concerned with the kinetic boundary condition for both the plane and curved vapor-liquid interfaces, and the fluid dynamics boundary condition for Navier-Stokes(fluid dynamics) equations. The kinetic boundary condition is formulated on the basis of molecular dynamics simulations and the fluid dynamics boundary condition is derived by a perturbation analysis of Gaussian-BGK Boltzmann equation applicable to polyatomic gases. The fluid dynamics boundary condition is applied to actual flow problems of bubbles in a liquid and droplets in a gas.
Shock waves in multiphase flows refers to a rich variety of phenomena of interest to physicists, chemists, and fluid dynamicists, as well as mechanical, biomedical and aeronautical engineers. This volume treats shock and expansion waves in: - complex, bubbly liquids (L. van Wijngaarden, Y. Tomita, V. Kedrinskii) and - cryogenic liquids (M. Murakami) and examines the relationship of shock waves with - phase transitions (A. Guha, C.F. Delale, G. Schnerr, M.E.H. van Dongen) - induced phase transitions (G.E.A. Meier) as well as their interaction with - solid foams, textiles, porous and granular media (B. Skews, D.M.J. Smeulders, M.E.H. van Dongen, V. Golub, O. Mirova). All chapters are self-contained, so they can be read independently, although they are of course thematically interrelated. Taken together, they offer a timely reference on shock waves in multiphase flows, including new viewpoints and burgeoning developments. The book will appeal to beginners as well as professional scientists and engineers.
This is the third edition of a book which has consistently fulfilled its aim of making a low-priced collection of tables available to the student and practicing engineer. In the second edition all parameters were made non-dimensional. This new edition now includes and additional table of Isentropic flow; it is hoped that this inclusion will significantly increase the range of application of the book's data.
J.M. Burgers (1895--1981) is regarded as one of the leading scientists in the field of fluid mechanics, contributing many important results, a number of which still bear his name. However, the work of this outstanding scientist was mostly published in the Proceedings and Transactions of The Royal Netherlands Academy of Sciences, of which he was a distinguished member. Nowadays, this work is almost impossible to obtain through the usual library channels. Therefore, the editors have decided to reissue the most important work of J.M. Burgers, which gives the reader access to the original papers which led to important results, now known as the Burgers Equation, the Burgers Vector and the Burgers Vortex. Further, the book contains a biography of J.M. Burgers, which provides the reader with both information on his scientific life, as well as a rounded impression of the many activities which J.M. Burgers performed or was involved in outside his science.
The "Turbulence and Interactions 2009" (TI2009) conference was held in Saint- Luce on the island of La Martinique, France, on May 31-June 5, 2009. The sci- tific sponsors of the conference were * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * Institut Jean Le Rond d'Alembert, Paris, * ONERA. This second TI conference was very successful as it attracted 65 researchers from 17 countries. The magnificent venue and the beautiful weather helped the participants to discuss freely and casually, share ideas and projects, and spend very good times all together. The organisers were fortunate in obtaining the presence of the following - vited speakers: L. Fuchs (KTH, Stockholm and Lund University), J. Jimenez (Univ. Politecnica Madrid), C.-H. Moeng (NCAR), A. Scotti (University of North Carolina), L. Shen (Johns Hopkins University) and A.J. Smits (Princeton Univ- sity). The topics covered by the 62 contributed papers ranged from experimental results through theory to computations. They represent a snapshot of the state-- the-art in turbulence research. The papers of the conference went through the usual reviewing process and the result is given in this book of Proceedings. In the present volume, the reader will find the keynote lectures followed by the contributed talks given in alphabetical order of the first author.
The book reports on advanced solutions to the problem of simulating wing and nacelle stall, as presented and discussed by internationally recognized researchers at the Closing Symposium of the DFG Research Unit FOR 1066. Reliable simulations of flow separation on airfoils, wings and powered engine nacelles at high Reynolds numbers represent great challenges in defining suitable mathematical models, computing numerically accurate solutions and providing comprehensive experimental data for the validation of numerical simulations. Additional problems arise from the need to consider airframe-engine interactions and inhomogeneous onset flow conditions, as real aircraft operate in atmospheric environments with often-large distortions. The findings of fundamental and applied research into these and other related issues are reported in detail in this book, which targets all readers, academics and professionals alike, interested in the development of advanced computational fluid dynamics modeling for the simulation of complex aircraft flows with flow separation.
Parallel CFD 2008, the twentieth in the high-level international series of meetings featuring different aspect of parallel computing in computational?uid dynamics and other modern scienti?c domains was held May 19?22, 2008 in Lyon, France. The themes of the 2008 meeting included the traditional emphases of this c- ference, and experiences with contemporary architectures. Around 70 presentations were included into the conference program in the following sessions: Parallel Algorithms and solvers Parallel performances with contemporary architectures Structured and unstructured grid methods, boundary methods software framework and components architecture CFD applications(Bio ?uid, environmentalproblem)Lattice Boltzmannmethodand SPH Optimisation in Aerodynamics This book presents an up-to-date overviewof the state of the art in Parallel C- putational Fluid Dynamics from Asia, Europe, and North America. This reviewed proceedingsincluded about sixty percent of the oral lectures presented at the conf- ence. The editors. VI Preface Parallel CFD 2008 was organized by the Institut Camille Jordan of the Univ- sity of Lyon 1 in collaboration with the Center for the Development of the Parallel Scienti?c Computing. The Scienti?c Committee and Local Organizers of Parallel CFD 2008 are - lighted to acknowledge the generous sponsorship of the following organizations, through ?nancial or in-kind assistance. Assistance of our sponsors allowed to - ganize scienti?c as well as social program of the conference.
This book is an outgrowth of the NSF-CBMS conference Nonlinear Waves GBP3 Weak Turbulence held at Case Western Reserve University in May 1992. The principal speaker at the conference was Professor V. E. Zakharov who delivered a series of ten lectures outlining the historical and ongoing developments in the field. Some twenty other researchers also made presentations and it is their work which makes up the bulk of this text. Professor Zakharov's opening chapter serves as a general introduction to the other papers, which for the most part are concerned with the application of the theory in various fields. While the word "turbulence" is most often associated with f:l. uid dynamics it is in fact a dominant feature of most systems having a large or infinite number of degrees of freedom. For our purposes we might define turbulence as the chaotic behavior of systems having a large number of degrees of freedom and which are far from thermodynamic equilibrium. Work in field can be broadly divided into two areas: * The theory of the transition from smooth laminar motions to the disordered motions characteristic of turbulence. * Statistical studies of fully developed turbulent systems. In hydrodynamics, work on the transition question dates back to the end of the last century with pioneering contributions by Osborne Reynolds and Lord Rayleigh.
This book presents novel design principles and technologies for dynamic isolation based on experimental studies. These approaches have now become the local standard in Beijing and are currently being promoted for use nationwide. Further, the book provides details of measures and guidelines for the design process. Departing from the traditional understanding that isolation wards should be designed with high negative pressure, airtight doors and fresh air, it establishes the basis for designing biological clean rooms, including isolation wards, using a simple and convenient scientific approach. This book is intended for designers, engineers, researchers, hospital management staff and graduate students in heating ventilation air conditioning (HVAC), air cleaning technologies and related areas.
The active field of multi-phase flow has undergone fundamental changes in the last decade. Many salient complex interfacial dynamics of such flows are now understood at a basic level with precise mathematical and quantitative characterization. This is quite a departure from the traditional empirical approach. At an IUTAM Symposium at Notre Dame, in 1999, some of the leading researchers in the field gathered to review the progress thus far and to contemplate future directions. Their reports are summarized in this Proceedings. Topics covered include solitary wave dynamics on viscous film flows, sheet formation and drop entrainment in stratified flow, wetting and dewetting dynamics, self-similar drop formation dynamics, waves in bubbly and suspension flow, and bubble dynamics. It is a unique and essential reference for applied mathematicians, physicists, research engineers, and graduate students to keep abreast of the latest theoretical and numerical developments that promise to transform multi-phase flow research.
The goal of this book is to present the new trend of Computational Fluid Dynamics (CFD) for the 21 st Century. It consists of papers presented at a symposium honoring Prof. No buyuki Satofuka on the occasion of his 60th birthday. The symposium entitled Computational Fluid Dynamics fOT the 21st Century was held at Kyoto Institute of Technology (KIT) in Kyoto, Japan on July 15-17,2000. The symposium was hosted by KIT as a memorial event celebrating the 100 year anniversary of this establishment. The invited speakers were from Ja pan as weil as from the international community in Asia, Europe and North America. It is a great pleasure to dedicate this book to Prof. Satofuka in appreciation ofhis contributions to this field. During the last 30 years, Prof. Satofuka made many important contributions to CFD ad vancing the numerics and our understanding of flow physics in different regimes. The details of his contributions are discussed in the first chapter. The book contains chapters covering re lated topics with emphasis on new promising directions for the 21 st Century. The chapters of the book reflect the 10 sessions of the symposium on both the numerics and the applications including grid generation and adaptation, new numerical schemes, optimi zation techniques and parallel computations as weil as applications to multi-sc ale and multi physics problems, design and flow control and new topics beyond aeronautics. In the follow ing, the chapters of the book are introduced."
As the growing number of conference proceedings, preprints, periodicals and popular journal articles are being joined by various electronic forms of dissemination of research, the series Progress in Low Temperature Physics assumes a particular responsibility in providing excellent reviews, guiding the reading of the literature and providing direction for future research possibilities. In this most recent volume, the main theme is research on superfluid and adsorbed phases of helium. In five chapters the following topics are dealt with. Chapter one is a review of one of the essential characteristics of superfluid 4He, the Landau critical velocity. Chapter two reviews the amazing properties of coherent spin dynamics in superfluid 3He. The next chapter examines a unique situation with a number of thermodynamic transitions between superfluid states and discusses the current experimental and theoretical situation. Properties of phases of 3He adsorbed on graphite are discussed in the following chapter, and in a complementary final chapter a review is presented on the properties of multilayer 3He-4He mixture films.
This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in CargA]se (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely explained. The second part concerns transport in fluids, plasmas and reacting media. On the other hand, new experiments of cold optically trapped atoms and electrodynamics cavity have been thoroughly presented. Finally, several papers bears on synchronism and control of chaos. The target audience of the proceedings are physicists, mathematicians and all scientists involved in Chaos and Dynamical Systems Theory and their fundamental applications in Physics and in the Science of Complex and Nonlinear phenomena.
The book is aimed at graduate students, researchers, engineers and physicists involved in fluid computations. An up-to-date account is given of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary methods. Attention is given to the difficulties arising from geometric complexity of the flow domain. Uniform accuracy for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Unified methods for compressible and incompressible flows are discussed. A treatment of the shallow-water equations is included. A basic introduction is given to efficient iterative solution methods. Many pointers are given to the current literature, facilitating further study.
The unique behavior of the "liquid state," together with the richness of phenomena that are observed, render liquids particularly interesting for the scientific community. Note that the most important reactions in chemical and biological systems take place in solutions and liquid-like environments. Additionally, liquids are utilized for numerous industrial applications. It is for these reasons that the understanding of their properties at the molecular level is of foremost interest in many fields of science and engineering. What can be said with certainty is that both the experimental and theoretical studies of the liquid state have a long and rich history, so that one might suppose this to be essentially a solved problem. It should be emphasized, however, that although, for more than a century, the overall scientific effort has led to a considerable progress, our understanding of the properties of the liquid systems is still incomplete and there is still more to be explored. Basic reason for this is the "many body" character of the particle interactions in liquids and the lack of long-range order, which introduce in liquid state theory and existing simulation techniques a number of conceptual and technical problems that require specific approaches. Also, many of the elementary processes that take place in liquids, including molecular translational, rotational and vibrational motions (Trans. -Rot. -Vib. coupling), structural relaxation, energy dissipation and especially chemical changes in reactive systems occur at different and/or extremely short timescales.
The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows."
This book discusses energy transfer, fluid flow and pollution in built environments. It provides a comprehensive overview of the highly detailed fundamental theories as well as the technologies used and the application of heat and mass transfer and fluid flow in built environments, with a focus on the mathematical models and computational and experimental methods. It is a valuable resource for researchers in the fields of buildings and environment, heat transfer and global warming.
In recent years there has been a considerable growth in interest in Monte Carlo methods, and quantum Monte Carlo methods in particlular. Clearly, the ever-increasing computational power available to researchers, has stimulated the development of improved algorithms, and almost all fields in computational physics and chemistry are affected by their applications. Here we just mention some fields that are covered in the lecture notes contained in this volume, viz. electronic structure studies of atoms, molecules and solids, nuclear structure, and low- or zero-temperature studies of strongly-correlated quantum systems, both of the continuum and lattice variety, and cooperative phenomena in classical systems. Although each area of application may have its own peculiarities, requiring specialized solutions, all share the same basic methodology. It was with the intention of bringing together researchers and students from these various areas that the NATO Advanced Study Institute on Quantum Monte Carlo Methods in Physics and Chemistry was held at Cornell University from 12 to 24 July, 1998. This book contains material presented at the Institute in a series of mini courses in quantum Monte Carlo methods. The program consisted of lectures predominantly of a pedagogical nature, and of more specialized seminars. The levels varied from introductory to advanced, and from basic methods to applications; the program was intended for an audience working towards the Ph.D. level and above. Despite the essentially pedagogic nature of the Institute, several of the lectures and seminars contained in this volume present recent developments not previously published.
This two-volume monograph is a comprehensive and up-to-date presentation of the theory and applications of kinetic equations. The first volume covers many-particle dynamics, Maxwell models of the Boltzmann equation (including their exact and self-similar solutions), and hydrodynamic limits beyond the Navier-Stokes level.
The Second Monte Verita Colloquium Fundamental Problematic Issues in Turbu lence was held in Monte Verita, Switzerland, on March 23-27, 1998. The main goal of the Colloquium was to bring together in the relaxed atmo sphere of Monte Verita a group of leading scientists (consisting of representatives of different generations) and to discuss informally and free of the influence of funding agencies and/or other "politics" of nonscientific nature the basic issues of turbulence. The intention was to put major emphasis on the exposition of the problematic aspects and discussion(s) - not mere reporting of results, i. e. not hav ing just one more meeting. For this purpose it was originally thought to leave all the afternoons free of formal presentations at all. However, this intention became unrealistic due to a number of reasons, and, in the first place, due to strong pres sure from various parts of the scientific community and non-scientific constraints to broaden the scope and to increase the number of participants as compared to the First Colloquium held in 1991. This resulted in a considerable reduction of time for discussions. Nevertheless, the remaining time for discussions was much larger than usually allocated at scientific conferences. On the scientific side the main idea was to bring together scientists work ing in turbulence from different fields, such as mathematics, physics, engineering and others. In this respect the Colloquium was definitely very successful and re sulted in a number of interesting interactions and contacts." |
You may like...
Geometric Structure of…
Michel-Marie Deza, Mathieu Dutour Sikiric, …
Hardcover
Numbers, Information and Complexity
Ingo Althoefer, Ning Cai, …
Hardcover
R5,507
Discovery Miles 55 070
Graphs and Discrete Dirichlet Spaces
Matthias Keller, Daniel Lenz, …
Hardcover
R4,037
Discovery Miles 40 370
New Trends in Intuitive Geometry
Gergely Ambrus, Imre Barany, …
Hardcover
R3,181
Discovery Miles 31 810
Graphs, Dioids and Semirings - New…
Michel Gondran, Michel Minoux
Hardcover
R4,295
Discovery Miles 42 950
|