Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics
The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of problems arising from the motion of viscous incompressible fluids around rotating obstacles. It offers a new approach to this type of problems. We derive the fundamental solution of the steady case and we give pointwise estimates of velocity and its gradient (first and second one). Each chapter is preceded by a thorough discussion of the investigated problems, along with their motivation and the strategy used to solve them.The book will be useful to researchers and graduate students in mathematics, in particular mathematical fluid mechanics and differential equations.
This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors. The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.
In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as a completely new chapter containing the basic physics describing the multi-phase flow in turbines, compressors, pumps and other rotating hydraulic machines.
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvenic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom's law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.
This book addresses the principles involved in the design and engineering of planing monohull power boats, with an emphasis on the theoretical fundamentals that readers need in order to be fully functional in marine design and engineering. Author William Vorus focuses on three topics: boat resistance, seaway response, and propulsion and explains the physical principles, mathematical details, and theoretical details that support physical understanding. In particular, he explains the approximations and simplifications in mathematics that lead to success in the applications of planing craft design engineering, and begins with the simplest configuration that embodies the basic physics. He leads readers, step-by-step, through the physical complications that occur, leading to a useful working knowledge of marine design and engineering. Included in the book are a wealth of examples that exemplify some of the most important naval architecture and marine engineering problems that challenge many of today's engineers.
This book reports on the German research initiative ComFliTe (Computational Flight Testing), the main goal of which was to enhance the capabilities of and tools for numerical simulation in flight physics to support future aircraft design and development. The initiative was coordinated by the German Aerospace Center (DLR) and promoted collaboration between the aircraft industry and academia. Activities focused on improving physical modeling for separated flows, developing advanced numerical algorithms for series computations and sensitivity predictions, as well as surrogate and reduced order modeling for aero data production and developing robust fluid-, structure- and flight mechanics coupling procedures. Further topics included more efficient handling of aircraft control surfaces and improving simulation methods for maneuvers, such as gust encounter. The important results of this three-year initiative were presented during the ComFliTe closing symposium, which took place at the DLR in Braunschweig, Germany, on 11-12 June 2012. Computational Flight Testing addresses both students and researchers in the areas of mathematics, numerical simulation and optimization methods, as well as professionals in aircraft design working at the forefront of their field.
This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demonstrate the success of the different ideas and models. After an introduction of the design of the reactor pressure vessels for pressurized and boiling water reactors the accuracy of the modern methods is demonstrated using large number of experimental data sets for steady and transient flows in heated bundles. Starting with single pipe boiling going through boiling in the rod bundles the analysis of complete vessel including the reactor is finally demonstrated. Then a powerful method for nonlinear stability analysis of flow boiling and condensation is introduced. Models are presented and their accuracies are investigated for describing critical multiphase flow at different level of complexity. Therefore the book presents a complete coverage of the modern Nuclear Thermal Hydrodynamics. This present third edition includes various updates, extensions, improvements and corrections.
This book gathers the proceedings of the Fifth Symposium on Hybrid RANS-LES Methods, which was held on March 19-21 in College Station, Texas, USA. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.
This book covers virtually all of the engineering science and technological aspects of separating water from particulate solids in the mining industry. It starts with an introduction to the field of mineral processing and the importance of water in mineral concentrators. The consumption of water in the various stages of concentration is discussed, as is the necessity of recovering the majority of that water for recycling. The book presents the fundamentals under which processes of solid-liquid separation are studied, approaching mixtures of discrete finely divided solid particles in water as a basis for dealing with sedimentation in particulate systems. Suspensions, treated as continuous media, provide the basis of sedimentation, flows through porous media and filtration. The book also considers particle aggregations, and thickening is analyzed in depth. Lastly, two chapters cover the fundamentals and application of rheology and the transport of suspensions. This work is suitable for researchers and professionals in laboratories and plants, and can also serve as additional reading for graduate courses on solid liquid separation as well as for advanced undergraduate and graduate level students for courses of fluid mechanics, solid-liquid separation, thickening, filtration and transport of suspensions in tubes and channels.
This book presents recent progress in the application of RANS turbulence models based on the Reynolds stress transport equations. A variety of models has been implemented by different groups into different flow solvers and applied to external as well as to turbo machinery flows. Comparisons between the models allow an assessment of their performance in different flow conditions. The results demonstrate the general applicability of differential Reynolds stress models to separating flows in industrial aerodynamics.
Invited Speakers.- Two new techniques for generating exactly incompressible approximate velocities.- Role of High-End Computing in Meeting NASA#x2019;s Science and Engineering Challenges.- Recent Advances of Multi-phase Flow Computation with the Adaptive Soroban-grid Cubic Interpolated Propagation (CIP) Method.- Schemes.- On the Computation of Steady-State Compressible Flows Using a DG Method.- Space-Time Discontinuous Galerkin Method for Large Amplitude Nonlinear Water Waves.- A discontinuous Galerkin method with Hancock-type time integration for hyperbolic systems with stiff relaxation source terms.- Very High Order, Non-Oscillatory Fluctuation Distribution Schemes.- High-order residual distribution: discontinuity capturing crosswind dissipation and diffusion.- High-Order Fluctuation-Splitting Schemes for Advection-Diffusion Equations.- Construction of Higher Order Residual Distribution Schemes.- Stable and convergent residual distribution for time-dependent conservation laws.- An ALE Formulation of the Multidimensional Residual Distribution Scheme for Computations on Moving Meshes.- Solution of the steady Euler equations using Fluctuation Splitting schemes on quadrilateral elements.- A Residual-Based Compact Scheme for All-Speed Flows on Unstructured Grids.- Vorticity Preserving Scheme for Unsteady Compressible Flows.- Extension of the SD Method to Viscous Flow on Unstructured Grids.- Strictly Stable High Order Difference Methods for the Compressible Euler and Navier-Stokes Equations.- Uniform Flow Preserving Property of High Order Upwind Finite Difference Schemes on Generalized Coordinate System.- Implementation of an Enhanced Flux Formulation for Unsteady Navier-Stokes Solutions.- Computation of Eigenspaces of Hyperbolic Systems.- A Proposed Cure to the Carbuncle Phenomenon.- The High Order WLSQR Scheme and its Applications in Turbomachinery.- Building Better (Weighted) ENO Methods.- Discontinuity Diagnosis Essentially Non-Oscillatory Schemes.- Third Order Reconstruction on Unstructured Highly Irregular 3D Meshes.- An Intrinsically Multi-Dimensional Acoustics Convection Upstream Resolution Algorithm for the Euler Equations.- Multi-dimensional Limiting Process for Two- and Three-dimensional Flow Physics Analyses.- A Multidimensional Kinetic Upwind Method for Euler Equations.- High Resolution Quantum Kinetic Beam Schemes and Its Applications to Ideal Quantum Gas Dynamical Flows.- Semi-GLS Stabilization of FEM Applied to Incompressible Flows with Higher Reynolds Numbers.- Finite volume box scheme for a certain class of nonlinear conservation laws in mixed form.- Numerical study of the Colocated Clustered Finite Volume Scheme.- Arbitrary High Order Finite Volume Schemes on Unstructured Meshes.- Algorithms.- A high scalability parallel algebraic multigrid solver.- Jacobian-Free Newton-Krylov Methods: Issues and Solutions.- Non-stationary two-stage relaxation based on the principle of aggregation multi-grid.- The efficient and accurate solution of porous media flow problems with strongly discontinuous coefficients.- Stability of Pressure-Correction Algorithms for Low-Speed Reacting and Non-Reacting Flow Simulations.- A simple hybrid well-balanced method for a 2D viscous shallow water model.- A kinetic energy-preserving P1 iso P2/P1 finite-element method for computing unsteady incompressible flows.- Study on the segregation algorithms of the incompressible Navier-Stokes equations using P1P1/P2P1 finite element formulation.- A Mach-uniform algorithm: coupled versus segregated approach.- Crank-Nicolson Scheme for Solving Low Mach Number Unsteady Viscous Flows Using an Implicit Preconditioned Dual Time Stepping Technique.- Heated Wake by Deferred Corrected ULTRA.- Convergence Acceleration for Euler Equation based on SPR.- Acceleration of Unsteady Incompressible Flow Calculation Using Extrapolation Methods.- Improved Numerical Simulations of Incompressible Flows Based on Viscous/Inviscid Interaction Procedures.- AMR - Adaptive mesh
Viscous flow is treated usually in the frame of boundary-layer theory and as two-dimensional flow. Books on boundary layers give at most the describing equations for three-dimensional boundary layers, and solutions often only for some special cases. This book provides basic principles and theoretical foundations regarding three-dimensional attached viscous flow. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers. This wider scope is necessary in view of the theoretical and practical problems to be mastered in practice. The topics are weak, strong, and global interaction, the locality principle, properties of three-dimensional viscous flow, thermal surface effects, characteristic properties, wall compatibility conditions, connections between inviscid and viscous flow, flow topology, quasi-one- and two-dimensional flows, laminar-turbulent transition and turbulence. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice. The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility conditions; connections between inviscid and viscous flows; flow topology; quasi-one- and two-dimensional flows; laminar-turbulent transition; and turbulence. Detailed discussions of examples illustrate these topics and the relevant phenomena encountered in three-dimensional viscous flows. The full governing equations, reference-temperature relations for qualitative considerations and estimations of flow properties, and coordinates for fuselages and wings are also provided. Sample problems with solutions allow readers to test their understanding.
There have been numerous computer-based simulation studies carried out on the subject of CO2 geo-sequestration. However, the amount of experimental data available in the literature on this topic, especially with regards to multiphase flow characteristics of fluid-rock systems during such processes, is very limited. This research was carried out with the aim of providing a better understanding of the multiphase fluid flow characteristics of fluid-rock systems during the geo-sequestration process. The ultimate goal of this research was to experimentally evaluate the change in a number of multiphase flow characteristics of the system over time caused by the potential chemical and physical/mechanical processes occurring during deep CO2 disposal. In order to achieve this goal the effects of cyclic/alternating CO2-brine flooding, flow direction, existence of residual hydrocarbon (natural gas) and change in the reservoir stress field on the system's multiphase flow behaviour were investigated. Until completion of this study there were no experimental data published in the literature addressing the above mentioned issues and the results obtained, and published within this thesis were the first of their kind.
The book is dedicated to the method and application potential of micro segmented flow. The recent state of development of this powerful technique is presented in 12 chapters by leading researchers from different countries. In the first section, the principles of generation and manipulation of micro-fluidic segments are explained. In the second section, the micro continuous-flow synthesis of different types of nanomaterials is shown as a typical example for the use of advantages of the technique in chemistry. In the third part, the particular importance of the technique in biotechnical applications is presented demonstrating the progress for miniaturized cell-free processes, for molecular biology and DNA-based diagnostics and sequencing as well as for the development of antibiotics and the evaluation of toxic effects in medicine and environment.
This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.
High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques. This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a section on stability of 2D ionized gas flow, and additional practical examples, such as MGD generators, Hall and ion thrusters, and Faraday generators.
The International Conference on Computational Fluid Dynamics is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid flow. The proceedings of the 2010 conference (ICCFD6) held in St Petersburg, Russia, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid dynamics.
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors
The 26th International Symposium on Shock Waves in Göttingen, Germany was jointly organised by the German Aerospace Centre DLR and the French-German Research Institute of Saint Louis ISL. The year 2007 marked the 50th anniversary of the Symposium, which first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW26 focused on the following areas: Shock Propagation and Reflection, Detonation and Combustion, Hypersonic Flow, Shock Boundary Layer Interaction, Numerical Methods, Medical, Biological and Industrial Applications, Richtmyer Meshkov Instability, Blast Waves, Chemically Reacting Flows, Diagnostics, Facilities, Flow Visualisation, Ignition, Impact and Compaction, Multiphase Flow, Nozzles Flows, Plasmas and Propulsion. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 26 and individuals interested in these fields.
Hybrid modelling of turbulent flows, combining RANS and LES techniques, has received increasing attention over the past decade to fill the gap between (U)RANS and LES computations in aerodynamic applications at industrially relevant Reynolds numbers. With the advantage of hybrid RANS-LES modelling approaches, being considerably more computationally efficient than full LES and more accurate than (U)RANS, particularly for unsteady aerodynamic flows, has motivated numerous research and development activities. These activities have been increasingly stimulated by the provision of modern computing facilities. The present book contains the contributions presented at the Third Symposium on Hybrid RANS-LES Methods, held in Gdansk, Poland, 10-12 June 2009. To a certain extent, this conference was a continuation of the first symposium taking place in Stockholm (Sweden, 2005) and the second in Corfu (Greece, 2007). Motivated by the extensive interest in the research community, the papers presented at the Corfu symposium were published by Springer in the book entitled “Advances in Hybrid RANS-LES Modelling” (in Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97). At the Gdansk symposium, along with four invited keynotes, given respectively by S. Fu, U. Michel, M. Sillen and P. Spalart, another 28 papers were presented on the following topics: Unsteady RANS, LES, Improved DES Methods, Hybrid RANS-LES Methods, DES versus URANS and other Hybrid Methods, Modelli- related Numerical Issues and Industrial Applications. After the symposium all full papers have been further reviewed and revised for publication in the present book.
This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the "Shock Wave Science and Technology Reference Library" presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.
The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.
The Leibniz Supercomputing Centre (LRZ) and the Bavarian Competence Network for Technical and Scienti?c High Performance Computing (KONWIHR) publish in the present book results of numerical simulations facilitated by the High P- formance Computer System in Bavaria (HLRB II) within the last two years. The papers were presented at the Fourth Joint HLRB and KONWIHR Review and - sult Workshop in Garching on 8th and 9th December 2009, and were selected from all progress reports of projects that use the HLRB II. Similar to the workshop two years ago, the majority of the contributed papers belong to the area of computational ?uid dynamics (CFD), condensed matter physics, astrophysics, chemistry, computer sciences and high-energy physics. We note a considerable increase of the user c- munity in some areas: Compared to 2007, the number of papers increased from 6 to 12 in condensed matter physics and from 2 to 5 in high-energy physics. Bio s- ences contributed only one paper in 2007, but four papers in 2009. This indicates that the area of application of supercomputers is continuously growing and entering new ?elds of research. The year 2007 saw two major events of particular importance for the LRZ. First, after a substantial upgrade with dual-core processors the SGI Altix 4700 superc- puter reached a peak performance of more than 62 Tera?op/s. And second, the n- pro?t organization Gauss Centre for Supercomputing e. V. (GCS) was founded on April 13th. |
You may like...
Transition Location Effect on Shock Wave…
Piotr Doerffer, Pawel Flaszynski, …
Hardcover
R4,297
Discovery Miles 42 970
Fundamental Research and Application of…
Hongliang Luo
Hardcover
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,253
Discovery Miles 62 530
Advances in Microfluidics and Nanofluids
S M Sohel Murshed
Hardcover
SolidWorks Flow Simulation 2022 Black…
Gaurav Verma, Matt Weber
Hardcover
R1,331
Discovery Miles 13 310
Pattern Formation and Stability in…
Nicola s O. Rojas
Hardcover
|