![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics
This book provides a comprehensive overview of statistical descriptions of turbulent flows. Its main objectives are to point out why ordinary perturbative treatments of the Navier-Stokes equation have been rather futile, and to present recent advances in non-perturbative treatments, e.g., the instanton method and a stochastic interpretation of turbulent energy transfer. After a brief introduction to the basic equations of turbulent fluid motion, the book outlines a probabilistic treatment of the Navier-Stokes equation and chiefly focuses on the emergence of a multi-point hierarchy and the notion of the closure problem of turbulence. Furthermore, empirically observed multiscaling features and their impact on possible closure methods are discussed, and each is put into the context of its original field of use, e.g., the renormalization group method is addressed in relation to the theory of critical phenomena. The intended readership consists of physicists and engineers who want to get acquainted with the prevalent concepts and methods in this research area.
This book is intended for researchers, graduate students and engineers in the fields of structure-borne sound, structural dynamics, and noise and vibration control. Based on vibration differential equations, it presents equations derived from the exponential function in the time domain, providing a unified framework for structural vibration analysis, which makes it more regular and normalized. This wave propagation approach (WPA) divides structures at "discontinuity points," and the waves show characteristics of propagation, reflection, attenuation, and waveform conversion. In each segment of the system between two "discontinuity points," the governing equation and constraint are expressed accurately, allowing the dynamic properties of complex systems to be precisely obtained. Starting with basic structures such as beams and plates, the book then discusses theoretical research on complicated and hybrid dynamical systems, and demonstrates that structural vibration can be analyzed from the perspective of elastic waves by applying WPA.
Current standard numerical methods are of little use in solving mathematical problems involving boundary layers. In Robust Computational Techniques for Boundary Layers, the authors construct numerical methods for solving problems involving differential equations that have non-smooth solutions with singularities related to boundary layers. They present a new numerical technique that provides precise results in the boundary layer regions for the problems discussed in the book. They show that this technique can be adapted in a natural way to a real flow problem, and that it can be used to construct benchmark solutions for comparison with solutions found using other numerical techniques.
This book offers comprehensive coverage of compressible flow phenomena and their applications, and is intended for undergraduate/graduate students, practicing professionals, and researchers interested in the topic. Thanks to the clear explanations provided of a wide range of basic principles, the equations and formulas presented here can be understood with only a basic grasp of mathematics. The book particularly focuses on shock waves, offering a unique approach to the derivation of shock wave relations from conservation relations in fluids together with a contact surface, slip line or surface; in addition, the thrust of a rocket engine and that of an air-breathing engine are also formulated. Furthermore, the book covers important fundamentals of various aspects of physical fluid dynamics and engineering, including one-dimensional unsteady flows, and two-dimensional flows, in which oblique shock waves and Prandtl-Meyer expansion can be observed.
This book describes and explains the basis of bio-inspired, leading-edge tubercles based on humpback whale flippers as passive but effective flow control devices, as well as providing a comprehensive practical guide in their applications. It first discusses the morphology of the humpback whale flipper from a biological perspective, before presenting detailed experimental and numerical findings from past investigations by various experts on the benefits of leading-edge tubercles and their engineering implementations. Leading-edge tubercle designs and functions have attracted considerable interest from researchers in terms of understanding their role in the underwater agility of these whales, and to exploit their flow dynamics in the development of new and novel engineering solutions. Extensive research over the past recent years has demonstrated that the maneuverability of these whales is at least in part due to the leading-edge tubercles acting as passive flow control devices to delay stall and increase lift in the post-stall regime. In addition to the inherent benefits in terms of aerodynamics and hydrodynamics, investigations into leading-edge tubercles have also broadened into areas of noise attenuation, stability and industrial applications. This book touches upon these areas, with an emphasis upon the effects of lifting-surface types, flow regimes, tubercle geometries, lifting-surface stability and potential industrial applications, among others. As such, it features contributions from key experts in the fields of biology, physics and engineering who have conducted significant studies into understanding the various aspects of leading-edge tubercles. Given the broad coverage and in-depth analysis, this book will benefit academic researchers, practicing engineers and graduate students interested in tapping into such a unique but highly functional flow control strategy.
This book reviews the status quo and visions for the future in the wind energy industry in China and around the globe, focusing on its roles in optimizing energy structure, alleviating environmental pollution, and coping with climate change. Providing a blueprint of wind power development till 2050, it suggests a series of further measures in the context of policies, regulations, laws, and marketing in order to overcome the existing bottlenecks. Moreover, it proposes a number of potential innovative technologies related to IT+ and advanced manufacturing, including integrated & distributed power and micro-grid systems, multi-energy complement, green and intelligent manufacturing, reliability design, blade design, manufacturing and maintenance, drive drain systems, and offshore wind farms. This book offers researchers and engineers insights into sustainable development in the wind power industry.
Presenting a comprehensive description of the theory and physics of
high-intensity ultrasound, this book also deals with a wide range
of problems associated with the industrial applications of
ultrasound, mainly in the areas of metallurgy and mineral
processing.
This book presents experimental and numerical findings on reducing shock-induced separation by applying transition upstream the shock wave. The purpose is to find out how close to the shock wave the transition should be located in order to obtain favorable turbulent boundary layer interaction. The book shares findings obtained using advanced flow measurement methods and concerning e.g. the transition location, boundary layer characteristics, and the detection of shock wave configurations. It includes a number of experimental case studies and CFD simulations that offer valuable insights into the flow structure. It covers RANS/URANS methods for the experimental test section design, as well as more advanced techniques, such as LES, hybrid methods and DNS for studying the transition and shock wave interaction in detail. The experimental and numerical investigations presented here were conducted by sixteen different partners in the context of the TFAST Project. The general focus is on determining if and how it is possible to improve flow performance in comparison to laminar interaction. The book mainly addresses academics and professionals whose work involves the aerodynamics of internal and external flows, as well as experimentalists working with compressible flows. It will also be of benefit for CFD developers and users, and for students of aviation and propulsion systems alike.
This book explores computational fluid dynamics applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Tokyo 2015 Workshop. It presents ship hull test cases, experimental data and submitted computational methods, conditions, grids and results. Analysis is made of errors for global (resistance, sinkage, trim and self-propulsion) and local flow (wave elevations, mean velocities and turbulence) variables, including standard deviations for global variables. The effects of grid size and turbulence models are evaluated for both global and local flow variables. Detailed analysis is made of turbulence modeling capabilities for capturing local flow physics. Errors and standard deviations are also assessed for added resistance (captive test cases) and course keeping/speed loss (free running test cases) in head and oblique waves. All submissions are used to evaluate the error and uncertainty by means of a systematic verification and validation (V&V) study along with statistical investigations.
This book unies the common tensor analytical aspects in engineering and physics. Using tensor analysis enables the reader to understand complex physical phenomena from the basic principles in continuum mechanics including the turbulence, its correlations and modeling to the complex Einstein' tensor equation. The development of General Theory of Relativity and the introduction of spacetime geometry would not have been possible without the use of tensor analysis. This textbook is primarily aimed at students of mechanical, electrical, aerospace, civil and other engineering disciplines as well as of theoretical physics. It also covers the special needs of practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self-study, provided that the reader has a sufficient knowledge of differential and integral calculus. Particular attention was paid to selecting the application examples. The transformation of Cartesian coordinate system into curvilinear one and the subsequent applications to conservation laws of continuum mechanics and the turbulence physics prepares the reader for fully understanding the Einstein tensor equations, which exhibits one of the most complex tensor equation in theoretical physics.
This book systematically introduces readers to the fundamental physics and a broad range of applications of acoustic levitation, one of the most promising techniques for the container-free handling of small solid particles and liquid droplets. As it does away with the need for solid walls and can easily be incorporated into analysis instruments, acoustic levitation has attracted considerable research interest in many fields, from fluid physics to material science. The book offers a comprehensive overview of acoustic levitation, including the history of acoustic radiation force; the design and development of acoustic levitators; the technology's applications, ranging from drop dynamics studies to bio/chemical analysis; and the insightful perspectives that the technique provides. It also discusses the latest advances in the field, from experiments to numerical simulations. As such, the book provides readers with a clearer understanding of acoustic levitation, while also stimulating new research areas for scientists and engineers in physics, chemistry, biology, medicine and other related fields.
In this resource, acknowledged leaders in the field examine current state-of-the-art and recent developments in technology, of flow boiling systems which are affected by convective flows. This important volume consists of expanded and revised peer-reviewed papers presented at the Engineering Foundations's Convective Flow Boiling: An International Conference held in 1995.
Up-to-Date Coverage of the Navier-Stokes Equation from an Expert in Harmonic Analysis The complete resolution of the Navier-Stokes equation-one of the Clay Millennium Prize Problems-remains an important open challenge in partial differential equations (PDEs) research despite substantial studies on turbulence and three-dimensional fluids. The Navier-Stokes Problem in the 21st Century provides a self-contained guide to the role of harmonic analysis in the PDEs of fluid mechanics. The book focuses on incompressible deterministic Navier-Stokes equations in the case of a fluid filling the whole space. It explores the meaning of the equations, open problems, and recent progress. It includes classical results on local existence and studies criterion for regularity or uniqueness of solutions. The book also incorporates historical references to the (pre)history of the equations as well as recent references that highlight active mathematical research in the field.
This book is a collection of research papers selected for presentation at the International Conference on Smart Computational Methods in Continuum Mechanics 2021, organized by Moscow Institute of Physics and Technology and the Institute for Computer Aided Design of Russian Academy of Sciences. The work is presented in two volumes. The primary objective of the book is to report the state-of-the-art on smart computational paradigms in continuum mechanics and explore the use of artificial intelligence paradigms such as neural nets, and machine learning for improving the performance of the designed engineering systems. The book includes up-to-date smart computational methods which are used to solve problems in continuum mechanics, engineering, seismic prospecting, non-destructive testing, and so on. The main features of the book are the research papers on the application of novel smart methods including neural nets and machine learning, computational algorithms, smart software systems, and high-performance computer systems for solving complex engineering problems. The case studies pertaining to the real-world applications in the above fields are included. The book presents a collection of best research papers in English language from some of the world leaders in the field of smart system modelling and design of engineering systems.
The general non equilibrium statistical approach, due to Zubarev, is presented briefly in Chapter 1. Chapter 2 is devoted to construction of an application of this approach to a statistical mechanical description of transport processes on a dividing surface between two immiscible fluids when singular densities of mass, and/or momentum, and/or energy are presented. In chapter 3 the shock wave in a gas is considered an interphase boundary of the gas-gas type. Chapters 4 and 5 fluctuations of flows of mass or momentum across the surfaces of sufficiently small liquid or solid particles, respectively, are discussed. Finally, chapter 6 discusses a generalization of the one-particle Brownian motion theory to many-particle situations, where the interparticle hydrodynamic ineraction are essential.
With contributions from leading researchers in the field, and including recent breakthrough work, this collection of recent results on near wall turbulence includes theory, new experiments, DNS, and modeling with RANS, LES and Low Order Dynamical Systems.
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
Explore a thorough and up to date overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application. The balance among various renewable and combustion technologies are surveyed, and numerical and experimental tools are discussed along with recent advances. Covers combustion of gaseous, liquid and solid fuels and subsonic and supersonic flows. This detailed insight into the turbulence-combustion coupling with turbulence and other physical aspects, shared by a number of the world leading experts in the field, makes this an excellent reference for graduate students, researchers and practitioners in the field.
Based on research into jets in supersonic crossflow carried out by the authors' team over the past 15 years, this book summarizes and presents many cutting-edge findings and analyses on this subject. It tackles the complicated mixing process of gas jets and atomization process of liquid jets in supersonic crossflow, and studies their physical mechanisms. Advanced experimental and numerical techniques are applied to further readers' understanding of atomization, mixing, and combustion of fuel jets in supersonic crossflow, which can promote superior fuel injection design in scramjet engines. The book offers a valuable reference guide for all researchers and engineers working on the design of scramjet engines, and will also benefit graduate students majoring in aeronautical and aerospace engineering.
This thesis demonstrates the first use of high-speed ultrasound imaging to non-invasively probe how the interior of a dense suspension responds to impact. Suspensions of small solid particles in a simple liquid can generate a rich set of dynamic phenomena that are of fundamental scientific interest because they do not conform to the typical behavior expected of either solids or liquids. Most remarkable is the highly counter-intuitive ability of concentrated suspensions to strongly thicken and even solidify when sheared or impacted. The understanding of the mechanism driving this solidification is, however, still limited, especially for the important transient stage while the response develops as a function of time. In this thesis, high-speed ultrasound imaging is introduced to track, for the first time, the transition from the flowing to the solidified state and directly observe the shock-like shear fronts that accompany this transition. A model is developed that agrees quantitatively with the experimental measurements. The combination of imaging techniques, experimental design, and modeling in this thesis represents a major breakthrough for the understanding of the dynamic response of dense suspensions, with important implications for a wide range of applications ranging from the handling of slurries to additive manufacturing.
This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.
This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.
This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
This self-contained, interdisciplinary book encompasses mathematics, physics, computer programming, analytical solutions and numerical modelling, industrial computational fluid dynamics (CFD), academic benchmark problems and engineering applications in conjunction with the research field of anisotropic turbulence. It focuses on theoretical approaches, computational examples and numerical simulations to demonstrate the strength of a new hypothesis and anisotropic turbulence modelling approach for academic benchmark problems and industrially relevant engineering applications. This book contains MATLAB codes, and C programming language based User-Defined Function (UDF) codes which can be compiled in the ANSYS-FLUENT environment. The computer codes help to understand and use efficiently a new concept which can also be implemented in any other software packages. The simulation results are compared to classical analytical solutions and experimental data taken from the literature. A particular attention is paid to how to obtain accurate results within a reasonable computational time for wide range of benchmark problems. The provided examples and programming techniques help graduate and postgraduate students, engineers and researchers to further develop their technical skills and knowledge.
This book discusses the recent advances in aircraft design methodologies. It provides an overview of topics such as shape optimization, robust design and aeroelasticity, focusing on fluid-structure numerical methodologies to address static and dynamic aeroelastic problems. It demonstrates that the capability to evaluate the interaction between aerodynamics, inertia and elastic forces is important to avoid drag penalties, control system efficiency loss and generation of potentially dangerous phenomena, such as divergence, control reversal and flutter. The book particularly highlights the advances in "high fidelity" CFD-CSM coupling, describing the latest experimental research to validate the numerical fluid-structure interaction analysis methodologies resulting from the EU-funded RBF4AERO and RIBES projects. |
![]() ![]() You may like...
Intelligent and Evolutionary Systems…
Kittichai Lavangnananda, Somnuk Phon-Amnuaisuk, …
Hardcover
R7,007
Discovery Miles 70 070
Mobility Data Management and Exploration
Nikos Pelekis, Yannis Theodoridis
Hardcover
R2,128
Discovery Miles 21 280
Evolutionary Data Clustering: Algorithms…
Ibrahim Aljarah, Hossam Faris, …
Hardcover
R5,371
Discovery Miles 53 710
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
|