0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (2)
  • R250 - R500 (5)
  • R500+ (2,006)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics

An Introduction to Fluid Mechanics (Hardcover, 1st ed. 2019): Chung Fang An Introduction to Fluid Mechanics (Hardcover, 1st ed. 2019)
Chung Fang
R3,029 Discovery Miles 30 290 Ships in 12 - 17 working days

This textbook provides a concise introduction to the mathematical theory of fluid motion with the underlying physics. Different branches of fluid mechanics are developed from general to specific topics. At the end of each chapter carefully designed problems are assigned as homework, for which selected fully worked-out solutions are provided. This book can be used for self-study, as well as in conjunction with a course in fluid mechanics.

Elastohydrodynamic Lubrication for Line and Point Contacts - Asymptotic and Numerical Approaches (Paperback): Ilya I Kudish Elastohydrodynamic Lubrication for Line and Point Contacts - Asymptotic and Numerical Approaches (Paperback)
Ilya I Kudish
R2,878 Discovery Miles 28 780 Ships in 12 - 17 working days

Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches describes a coherent asymptotic approach to the analysis of lubrication problems for heavily loaded line and point contacts. This approach leads to unified asymptotic equations for line and point contacts as well as stable numerical algorithms for the solution of these elastohydrodynamic lubrication (EHL) problems. A Unique Approach to Analyzing Lubrication Problems for Heavily Loaded Line and Point Contacts The book presents a robust combination of asymptotic and numerical techniques to solve EHL problems for lightly and heavily loaded line and point contacts. It also proposes a reasonably simple and naturally based regularization approach that produces stable solutions in heavily loaded EHL contacts. The book offers a clear understanding of the processes taking place in heavily loaded line and point EHL contacts as well as of the proper solution structure for EHL problems. It outlines concrete ways to determine important design parameters such as lubrication film thickness and frictional stresses and forces. The book establishes a close link between EHL problems for heavily loaded point and line contacts. Fine Tune Your Methods for Solving Elastohydrodynamic Lubrication Problems In most cases, the equations in the book are derived from first principles. The author describes each of the asymptotic and numerical methods in detail, making it easier for readers to apply them to various problems. The problem solutions are presented in the form of simple analytical formulas, graphs, and tables. Almost all the chapters include exercises that highlight key points and skills. Suitable for engineering and applied mathematics students, this is also a unique resource for researchers and practitioners who want to fine tune their solution methods and design better numerical methods to tackle elastohydrodynamic lubrication problems.

Wicking in Porous Materials - Traditional and Modern Modeling Approaches (Paperback): Reza Masoodi, Krishna M. Pillai Wicking in Porous Materials - Traditional and Modern Modeling Approaches (Paperback)
Reza Masoodi, Krishna M. Pillai
R2,271 Discovery Miles 22 710 Ships in 12 - 17 working days

A comprehensive presentation of wicking models developed in academia and industry, Wicking in Porous Materials: Traditional and Modern Modeling Approaches contains some of the most important approaches and methods available, from the traditional Washburn-type models to the latest Lattice-Boltzmann approaches developed during the last few years. It provides a sound conceptual framework for learning the science behind different mathematical models while at the same time being aware of the practical issues of model validation as well as measurement of important properties and parameters associated with various models. Top experts in the field reveal the secrets of their wicking models. The chapters cover the following topics: Wetting and wettability Darcy's law for single- and multi-phase flows Traditional capillary models, such as the Washburn-equation based approaches Unsaturated-flow based methodologies (Richard's Equation) Sharp-front (plug-flow) type approaches using Darcy's law Pore network models for wicking after including various micro-scale fluid-flow phenomena Studying the effect of evaporation on wicking using pore network models Fractal-based methods Modeling methods based on mixture theory Lattice-Boltzmann method for modeling wicking in small scales Modeling wicking in swelling and non-rigid porous media This extensive look at the modeling of porous media compares various methods and treats traditional topics as well as modern technologies. It emphasizes experimental validation of modeling approaches as well as experimental determination of model parameters. Matching models to particular media, the book provides guidance on what models to use and how to use them.

Nanoparticle Heat Transfer and Fluid Flow (Paperback): W.J. Minkowycz, E Sparrow, J P Abraham Nanoparticle Heat Transfer and Fluid Flow (Paperback)
W.J. Minkowycz, E Sparrow, J P Abraham
R2,265 Discovery Miles 22 650 Ships in 12 - 17 working days

Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.

Handbook of Hydraulic Fluid Technology (Paperback, 2nd edition): George E. Totten Handbook of Hydraulic Fluid Technology (Paperback, 2nd edition)
George E. Totten; Edited by Victor J. De Negri
R2,916 Discovery Miles 29 160 Ships in 12 - 17 working days

Detailing the major developments of the last decade, the Handbook of Hydraulic Fluid Technology, Second Edition updates the original and remains the most comprehensive and authoritative book on the subject. With all chapters either revised (in some cases, completely) or expanded to account for new developments, this book sets itself apart by approaching hydraulic fluids as a component of a system and focusing on key technological aspects. Written by experts from around the world, the handbook covers all major classes of hydraulic fluids in detail, delving into chemistry, design, fluid maintenance and selection, and other key concepts. It also offers a rigorous overview of hydraulic fluid technology and evaluates the ecological benefits of water and its use as an important alternative technology. This complete overview discusses pumps and motors, valves, and reservoir design, as well as fluid properties and associated topics. These include air entrainment, modulus, lubrication and wear assessment by bench and pump testing, biodegradability, and fire resistance. Contributors also present particularly important material on biodegradable fluids and the use of water as a hydraulic fluid. As the foremost resource on the design, selection, and testing of hydraulic systems and fluids used in engineering applications, this book contains new illustrations, data tables, and practical examples, all updated with essential information on the latest methods. To streamline presentation, relevant content from the first edition has been integrated into this new version, where appropriate. The result is a reference that helps readers develop an unparalleled understanding of the total hydraulic system, including essential hardware, fluid properties, and hydraulic lubricants.

Heat Pipes and Solid Sorption Transformations - Fundamentals and Practical Applications (Paperback): L.L. Vasiliev, Sadik Kakac Heat Pipes and Solid Sorption Transformations - Fundamentals and Practical Applications (Paperback)
L.L. Vasiliev, Sadik Kakac
R2,112 Discovery Miles 21 120 Ships in 12 - 17 working days

Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for relevant applications based on the use of efficient heat transfer devices-heat pipe and two-phase thermosyphons-with the objectives of energy efficiency and sustainability. This book also discusses heat pipe thermal control as it relates to spacecraft applications. The first few chapters of Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications focus on heating and cooling, the principles of adsorption, adsorption dynamics, and the availability of three-phase boundaries. Other chapters cover successful heat pipe applications and heat-pipe-based thermal control of fuel cells, solid sorption transformers, and electronic components and air-condition devices. The final chapters summarize the achievements in the field of heat and mass transfer study in heat pipes with variable properties such as gas loaded heat pipes. Several configurations of thermosyphons are showcased, with suggested applications. A number of examples of equipment using the thermosyphon technology are presented and, in the final chapter, the concept of flow boiling and flow condensation heat transfer in micochannels is analyzed in detail.

p- and hp- Finite Element Methods - Theory and Applications in Solid and Fluid Mechanics (Hardcover): C. Schwab p- and hp- Finite Element Methods - Theory and Applications in Solid and Fluid Mechanics (Hardcover)
C. Schwab
R5,699 R4,619 Discovery Miles 46 190 Save R1,080 (19%) Ships in 12 - 17 working days

This book is an introduction to the mathematical analysis of p- and hp-finite elements applied to elliptic problems in solid and fluid mechanics, and is suitable for graduate students and researchers who have had some prior exposure to finite element methods (FEM). In the last decade the p-, hp-, and spectral element methods have emerged as efficient and robust approximation methods for several classes of problems in this area. The aim of this book is therefore to establish the exponential convergence of such methods for problems with the piecewise analytic solutions which typically arise in engineering. It looks at the variational formulation of boundary value problems with particular emphasis on the regularity of the solution. The books then studies the p- and hp- convergence of FEM in one and two dimensions, supplying complete proofs. Also covered are hp-FEM for saddle point problems and the techniques for establishing the discrete infsup condition. Finally, hp-FEM in solid mechanics and the issue of locking is addressed in the context of these methods.

Introduction to Engineering Fluid Mechanics (Hardcover): Marcel Escudier Introduction to Engineering Fluid Mechanics (Hardcover)
Marcel Escudier
R2,835 Discovery Miles 28 350 Ships in 12 - 17 working days

We inhabit a world of fluids, including air (a gas), water (a liquid), steam (vapour) and the numerous natural and synthetic fluids which are essential to modern-day life. Fluid mechanics concerns the way fluids flow in response to imposed stresses. The subject plays a central role in the education of students of mechanical engineering, as well as chemical engineers, aeronautical and aerospace engineers, and civil engineers. This textbook includes numerous examples of practical applications of the theoretical ideas presented, such as calculating the thrust of a jet engine, the shock- and expansion-wave patterns for supersonic flow over a diamond-shaped aerofoil, the forces created by liquid flow through a pipe bend and/or junction, and the power output of a gas turbine. The first ten chapters of the book are suitable for first-year undergraduates. The latter half covers material suitable for fluid-mechanics courses for upper-level students Although knowledge of calculus is essential, this text focuses on the underlying physics. The book emphasizes the role of dimensions and dimensional analysis, and includes more material on the flow of non-Newtonian liquids than is usual in a general book on fluid mechanics - a reminder that the majority of synthetic liquids are non-Newtonian in character.

Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models (Hardcover): Pierre-Louis Lions Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models (Hardcover)
Pierre-Louis Lions
R5,366 R4,434 Discovery Miles 44 340 Save R932 (17%) Ships in 12 - 17 working days

This series of books forms a unique and rigorous treatise on various mathematical aspects of fluid mechanics models. These models consist of systems of nonlinear partial differential equations such as the incompressible and compressible NavierStokes equations. The main emphasis in the first volume is on the mathematical analysis of incompressible models. The second volume is an attempt to achieve a mathematical understanding of compressible Navier-Stokes equations. It is probably the first reference covering the issue of global solutions in the large. It includes entirely new material on compactness properties of solutions for the Cauchy problem, the existence and regularity of stationary solutions, and the existence of global weak solutions. Written by one of the world's leading researchers in nonlinear partial differential equations, Mathematical Topics in Fluid Mechanics will be an indispensable reference for every serious researcher in the field. Its topicality and the clear, concise, and deep presentation by the author make it an outstanding contribution to the great theoretical problems in science concerning rigorous mathematical modelling of physical phenomena. Pierre-Louis Lions is Professor of Mathematics at the University Paris-Dauphine and of Applied Mathematics at the Ecole Polytechnique.

Microscale and Nanoscale Heat Transfer - Analysis, Design, and Application (Hardcover): Mourad Rebay, Sadik Kakac, Renato M.... Microscale and Nanoscale Heat Transfer - Analysis, Design, and Application (Hardcover)
Mourad Rebay, Sadik Kakac, Renato M. Cotta
R6,168 Discovery Miles 61 680 Ships in 12 - 17 working days

Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications features contributions from prominent researchers in the field of micro- and nanoscale heat transfer and associated technologies and offers a complete understanding of thermal transport in nano-materials and devices. Nanofluids can be used as working fluids in thermal systems; the thermal conductivity of heat transfer fluids can be increased by adding nanoparticles in fluids. This book provides details of experimental and theoretical investigations made on nanofluids for use in the biomechanical and aerospace industries. It examines the use of nanofluids in improving heat transfer rates, covers the numerical approaches for computational fluid dynamics (CFD) simulation of nanofluids, and reviews the experimental results of commonly used nanofluids dispersed in both spherical and nonspherical nanoparticles. It also focuses on current and developing applications of microscale and nanoscale convective heat transfer. In addition, the book covers a wide range of analysis that includes: Solid-liquid interface phonon transfer at the molecular level The validity of the continuum hypothesis and Fourier law in nanochannels Conventional methods of using molecular dynamics (MD) for heat transport problems The molecular dynamics approach to calculate interfacial thermal resistance (ITR) A review of experimental results in the field of heat pipes and two-phase flows in thermosyphons Microscale convective heat transfer with gaseous flow in ducts The application of the lattice Boltzmann method for thermal microflows A numerical method for resolving the problem of subcooled convective boiling flows in microchannel heat sinks Two-phase boiling flow and condensation heat transfer in mini/micro channels, and more Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications addresses the need for thermal packaging and management for use in cooling electronics and serves as a resource for researchers, academicians, engineers, and other professionals working in the area of heat transfer, microscale and nanoscale science and engineering, and related industries.

Introduction To Nearshore Hydrodynamics (Hardcover): Ib A. Svendsen Introduction To Nearshore Hydrodynamics (Hardcover)
Ib A. Svendsen
R3,425 Discovery Miles 34 250 Ships in 12 - 17 working days

This book is intended as an introductory textbook for graduate students and as a reference book for engineers and scientists working in the field of coastal engineering. As such it gives a description of the theories for wave and nearshore hydrodynamics. It is meant to de-mystify the topics and hence starts at a fairly basic level. It requires knowledge of fluid mechanics equivalent to a first year graduate level. At the end of each topic, an attempt is made to give an overview of the present stage of the scientific development in that area with numerous references for further studies.

Spectral/hp Element Methods for Computational Fluid Dynamics - Second Edition (Hardcover, 2nd Revised edition): George... Spectral/hp Element Methods for Computational Fluid Dynamics - Second Edition (Hardcover, 2nd Revised edition)
George Karniadakis, Spencer Sherwin
R4,749 Discovery Miles 47 490 Ships in 12 - 17 working days

Spectral methods have long been popular in direct and large eddy simulation of turbulent flows, but their use in areas with complex-geometry computational domains has historically been much more limited. More recently the need to find accurate solutions to the viscous flow equations around complex configurations has led to the development of high-order discretization procedures on unstructured meshes, which are also recognized as more efficient for solution of time-dependent oscillatory solutions over long time periods. Here Karniadakis and Sherwin present a much-updated and expanded version of their successful first edition covering the recent and significant progress in multi-domain spectral methods at both the fundamental and application level. Containing over 50% new material, including discontinuous Galerkin methods, non-tensorial nodal spectral element methods in simplex domains, and stabilization and filtering techniques, this text aims to introduce a wider audience to the use of spectral/hp element methods with particular emphasis on their application to unstructured meshes. It provides a detailed explanation of the key concepts underlying the methods along with practical examples of their derivation and application, and is aimed at students, academics and practitioners in computational fluid mechanics, applied and numerical mathematics, computational mechanics, aerospace and mechanical engineering and climate/ocean modelling.

Solved Practical Problems in Fluid Mechanics (Hardcover): Carl J Schaschke Solved Practical Problems in Fluid Mechanics (Hardcover)
Carl J Schaschke
R1,445 Discovery Miles 14 450 Ships in 12 - 17 working days

Contains Fluid Flow Topics Relevant to Every Engineer Based on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple mathematical approaches that clarify key concepts as well as the significance of their solutions, and fosters an understanding of the fundamentals encountered in engineering. Comprised of nine chapters, this book grapples with a number of relevant problems and asks two pertinent questions to extend understanding and appreciation: What should we look out for? and What else is interesting? This text can be used for exam preparation and addresses problems that include two-phase and multi-component flow, viscometry and the use of rheometers, non-Newtonian fluids, and applications of classical fluid flow principles. While the author incorporates terminology recognized by all students of engineering and provides a full understanding of the basics, the book is written for engineers who already have a rudimentary understanding and familiarity of fluid flow phenomena. It includes engineering concepts such as dimensionless numbers and requires a fluency in basic mathematical skills, such as differential calculus and the associated application of boundary conditions to reach solutions. Solved Practical Problems in Fluid Mechanics thoroughly explains the concepts and principles of fluid flow by highlighting various problems frequently encountered by engineers with accompanying solutions. This text can therefore help you gain a complete understanding of fluid mechanics and draw on your own practical experiences to tackle equally tricky problems.

Fluid Mechanics - An Intermediate Approach (Hardcover): Bijay Sultanian Fluid Mechanics - An Intermediate Approach (Hardcover)
Bijay Sultanian
R4,777 Discovery Miles 47 770 Ships in 12 - 17 working days

Fluid Mechanics: An Intermediate Approach addresses the problems facing engineers today by taking on practical, rather than theoretical problems. Instead of following an approach that focuses on mathematics first, this book allows you to develop an intuitive physical understanding of various fluid flows, including internal compressible flows with simultaneous area change, friction, heat transfer, and rotation. Drawing on over 40 years of industry and teaching experience, the author emphasizes physics-based analyses and quantitative predictions needed in the state-of-the-art thermofluids research and industrial design applications. Numerous worked-out examples and illustrations are used in the book to demonstrate various problem-solving techniques. The book covers compressible flow with rotation, Fanno flows, Rayleigh flows, isothermal flows, normal shocks, and oblique shocks; Bernoulli, Euler, and Navier-Stokes equations; boundary layers; and flow separation. Includes two value-added chapters on special topics that reflect the state of the art in design applications of fluid mechanics Contains a value-added chapter on incompressible and compressible flow network modeling and robust solution methods not found in any leading book in fluid mechanics Gives an overview of CFD technology and turbulence modeling without its comprehensive mathematical details Provides an exceptional review and reinforcement of the physics-based understanding of incompressible and compressible flows with many worked-out examples and problems from real-world fluids engineering applications Fluid Mechanics: An Intermediate Approach uniquely aids in the intuitive understanding of various fluid flows for their physics-based analyses and quantitative predictions needed in the state-of-the-art thermofluids research and industrial design applications.

Waves and Oscillations in Nature - An Introduction (Hardcover): A. Satya Narayanan, Swapan K. Saha Waves and Oscillations in Nature - An Introduction (Hardcover)
A. Satya Narayanan, Swapan K. Saha
R5,053 Discovery Miles 50 530 Ships in 12 - 17 working days

Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate. Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics, plasma physics, optics, and astrophysics. The authors first explain introductory aspects of waves and electromagnetism, including characteristics of waves, the basics of electrostatics and magnetostatics, and Maxwell's equations. They then explore waves in a uniform media, waves and oscillations in hydrodynamics, and waves in a magnetized medium for homogeneous and nonhomogeneous media. The book also describes types of shock waves, such as normal and oblique shocks, and discusses important details pertaining to waves in optics, including polarization from experimental and observational points of view. The book concludes with a focus on plasmas, covering different plasma parameters, quasilinear and nonlinear aspects of plasma waves, and various instabilities in hydrodynamics and plasmas.

Large Eddy Simulation for Incompressible Flows - An Introduction (Hardcover, 3rd ed. 2006): Charles Meneveau Large Eddy Simulation for Incompressible Flows - An Introduction (Hardcover, 3rd ed. 2006)
Charles Meneveau; P. Sagaut
R4,070 Discovery Miles 40 700 Ships in 12 - 17 working days

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering

From the foreword to the third edition written by Charles Meneveau: ..". this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Lecture Notes On Regularity Theory For The Navier-stokes Equations (Hardcover): Gregory Seregin Lecture Notes On Regularity Theory For The Navier-stokes Equations (Hardcover)
Gregory Seregin
R1,613 Discovery Miles 16 130 Ships in 12 - 17 working days

The lecture notes in this book are based on the TCC (Taught Course Centre for graduates) course given by the author in Trinity Terms of 2009-2011 at the Mathematical Institute of Oxford University. It contains more or less an elementary introduction to the mathematical theory of the Navier-Stokes equations as well as the modern regularity theory for them. The latter is developed by means of the classical PDE's theory in the style that is quite typical for St Petersburg's mathematical school of the Navier-Stokes equations.The global unique solvability (well-posedness) of initial boundary value problems for the Navier-Stokes equations is in fact one of the seven Millennium problems stated by the Clay Mathematical Institute in 2000. It has not been solved yet. However, a deep connection between regularity and well-posedness is known and can be used to attack the above challenging problem. This type of approach is not very well presented in the modern books on the mathematical theory of the Navier-Stokes equations. Together with introduction chapters, the lecture notes will be a self-contained account on the topic from the very basic stuff to the state-of-art in the field.

Engineering Rheology (Hardcover, 2nd Revised edition): Roger I. Tanner Engineering Rheology (Hardcover, 2nd Revised edition)
Roger I. Tanner
R4,976 R4,185 Discovery Miles 41 850 Save R791 (16%) Ships in 12 - 17 working days

Many diverse materials, from man-made plastics to slurry, behave in ways that cannot be predicted using straightforward 'classical' equations. This book provides a guide, with examples, for those who wish to make predictions about the mechanical and thermal behaviour of non-Newtonian materials in engineering and processing technology. There is an emphasis on the practical solution of problems using computer methods, and on the correlation between theory and experimental work.

Lattice Boltzmann Method And Its Application In Engineering (Hardcover): Zhaoli Guo, Chang Shu Lattice Boltzmann Method And Its Application In Engineering (Hardcover)
Zhaoli Guo, Chang Shu
R3,827 Discovery Miles 38 270 Ships in 10 - 15 working days

Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions. With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.

Computational Fluid Dynamics for Engineers and Scientists (Hardcover, 1st ed. 2018): Sreenivas Jayanti Computational Fluid Dynamics for Engineers and Scientists (Hardcover, 1st ed. 2018)
Sreenivas Jayanti
R2,695 Discovery Miles 26 950 Ships in 12 - 17 working days

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry. Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter. CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.

Physics of Continuous Media - Problems and Solutions in Electromagnetism, Fluid Mechanics and MHD, Second Edition (Paperback,... Physics of Continuous Media - Problems and Solutions in Electromagnetism, Fluid Mechanics and MHD, Second Edition (Paperback, 2nd edition)
Grigory Vekstein
R1,749 Discovery Miles 17 490 Ships in 12 - 17 working days

Based on the author's many years of lectures and tutorials at Novosibirsk State University and the University of Manchester, Physics of Continuous Media: Problems and Solutions in Electromagnetism, Fluid Mechanics and MHD, Second Edition takes a problems-based approach to teaching continuous media. The book's problems and detailed solutions make it an ideal companion text for advanced physics and engineering courses. Suitable for any core physics program, this revised and expanded edition includes a new chapter on magnetohydrodynamics as well as additional problems and more detailed solutions. Each chapter begins with a summary of the definitions and equations that are necessary to understand and tackle the problems that follow. The text also provides numerous references throughout, including Landau and Lifshitz's famous course of theoretical physics and original journal publications.

Microfluidics and Microscale Transport Processes (Hardcover, New): Suman Chakraborty Microfluidics and Microscale Transport Processes (Hardcover, New)
Suman Chakraborty
R5,307 Discovery Miles 53 070 Ships in 12 - 17 working days

The advancements in micro- and nano-fabrication techniques, especially in the last couple of decades, have led research communities, over the world, to invest unprecedented levels of attention on the science and technology of micro- and nano-scale devices and the concerned applications. With an intense focus on micro- and nanotechnology from a fluidic perspective, Microfluidics and Microscale Transport Processes provides a broad review of advances in this field. A comprehensive compendium of key indicators to recent developments in some very active research topics in microscale transport processes, it supplies an optimal balance between discussions of concrete applications and development of fundamental understanding. The chapters discuss a wide range of issues in the sub-domains of capillary transport, fluidic resistance, electrokinetics, substrate modification, rotational microfluidics, and the applications of the phenomena of these sub-domains in diverse situations ranging from non-biological to biological ones like DNA hybridization and cellular biomicrofluidics. The book also addresses a generic problem of particle transport in nanoscale colloidal suspensions and includes a chapter on Lattice-Boltzmann methods for phase-changing problems which represents a generic particle based approach that may be useful to address many microfluidic problems of interdisciplinary relevance.

Elements Of Fluid Dynamics (Hardcover): Guido Buresti Elements Of Fluid Dynamics (Hardcover)
Guido Buresti
R3,356 Discovery Miles 33 560 Ships in 12 - 17 working days

Elements of Fluid Dynamics is intended to be a basic textbook, useful for undergraduate and graduate students in different fields of engineering, as well as in physics and applied mathematics. The main objective of the book is to provide an introduction to fluid dynamics in a simultaneously rigorous and accessible way, and its approach follows the idea that both the generation mechanisms and the main features of the fluid dynamic loads can be satisfactorily understood only after the equations of fluid motion and all their physical and mathematical implications have been thoroughly assimilated. Therefore, the complete equations of motion of a compressible viscous fluid are first derived and their physical and mathematical aspects are thoroughly discussed. Subsequently, the necessity of simplified treatments is highlighted, and a detailed analysis is made of the assumptions and range of applicability of the incompressible flow model, which is then adopted for most of the rest of the book. Furthermore, the role of the generation and dynamics of vorticity on the development of different flows is emphasized, as well as its influence on the characteristics, magnitude and predictability of the fluid dynamic loads acting on moving bodies.The book is divided into two parts which differ in target and method of utilization. The first part contains the fundamentals of fluid dynamics that are essential for any student new to the subject. This part of the book is organized in a strictly sequential way, i.e. each chapter is assumed to be carefully read and studied before the next one is tackled, and its aim is to lead the reader in understanding the origin of the fluid dynamic forces on different types of bodies. The second part of the book is devoted to selected topics that may be of more specific interest to different students. In particular, some theoretical aspects of incompressible flows are first analysed and classical applications of fluid dynamics such as the aerodynamics of airfoils, wings and bluff bodies are then described. The one-dimensional treatment of compressible flows is finally considered, together with its application to the study of the motion in ducts.

Elements Of Fluid Dynamics (Paperback): Guido Buresti Elements Of Fluid Dynamics (Paperback)
Guido Buresti
R1,694 Discovery Miles 16 940 Ships in 12 - 17 working days

Elements of Fluid Dynamics is intended to be a basic textbook, useful for undergraduate and graduate students in different fields of engineering, as well as in physics and applied mathematics. The main objective of the book is to provide an introduction to fluid dynamics in a simultaneously rigorous and accessible way, and its approach follows the idea that both the generation mechanisms and the main features of the fluid dynamic loads can be satisfactorily understood only after the equations of fluid motion and all their physical and mathematical implications have been thoroughly assimilated. Therefore, the complete equations of motion of a compressible viscous fluid are first derived and their physical and mathematical aspects are thoroughly discussed. Subsequently, the necessity of simplified treatments is highlighted, and a detailed analysis is made of the assumptions and range of applicability of the incompressible flow model, which is then adopted for most of the rest of the book. Furthermore, the role of the generation and dynamics of vorticity on the development of different flows is emphasized, as well as its influence on the characteristics, magnitude and predictability of the fluid dynamic loads acting on moving bodies.The book is divided into two parts which differ in target and method of utilization. The first part contains the fundamentals of fluid dynamics that are essential for any student new to the subject. This part of the book is organized in a strictly sequential way, i.e. each chapter is assumed to be carefully read and studied before the next one is tackled, and its aim is to lead the reader in understanding the origin of the fluid dynamic forces on different types of bodies. The second part of the book is devoted to selected topics that may be of more specific interest to different students. In particular, some theoretical aspects of incompressible flows are first analysed and classical applications of fluid dynamics such as the aerodynamics of airfoils, wings and bluff bodies are then described. The one-dimensional treatment of compressible flows is finally considered, together with its application to the study of the motion in ducts.

Submarine Hydrodynamics (Paperback, Softcover reprint of the original 2nd ed. 2018): Martin Renilson Submarine Hydrodynamics (Paperback, Softcover reprint of the original 2nd ed. 2018)
Martin Renilson
R3,134 R2,436 Discovery Miles 24 360 Save R698 (22%) Ships in 12 - 17 working days

This book covers specific aspects of submarine hydrodynamics in a very practical manner. The author reviews basic concepts of ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The book is intended for professionals working in submarine hydrodynamics, as well as for advanced students in the field. This revised edition includes updated information on empirical methods for predicting the hydrodynamic manoeuvring coefficients, and for predicting the resistance of a submarine. It also includes new material on how to assess propulsors, and includes measures of wake distortion, which has a detrimental influence on propulsor performance. Additional information on safe manoeuvring envelopes is also provided. The wide range of references has been updated to include the latest material in the field.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
A Better World - Reflections on Peace…
Pope Francis Paperback R398 R328 Discovery Miles 3 280
A Coming of God Into Time and History…
Hilary D. Regan Hardcover R468 Discovery Miles 4 680
The Temporal Mission of the Holy Ghost…
Henry Edward Manning Paperback R500 Discovery Miles 5 000
Consecration to St. Joseph - The Wonders…
Fr Donald Calloway Paperback R448 R335 Discovery Miles 3 350
The Gospel of Mark - A Spiritual and…
Pope Francis Paperback R536 R448 Discovery Miles 4 480
The Life of Philip Thomas Howard, O.P…
C. F. Raymund Palmer Paperback R460 Discovery Miles 4 600
Theology of the Body in One Hour
Jason Evert Paperback R258 Discovery Miles 2 580
Trusting God in the Present
Jacques Philippe Paperback R209 R173 Discovery Miles 1 730
History of Latin Christianity…
Henry Hart Milman Paperback R655 Discovery Miles 6 550
Como Encontrar a Su Alma Gemela Sin…
Jason & Crystalina Evert Hardcover R657 Discovery Miles 6 570

 

Partners