![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics
Addressing classical material as well as new perspectives, Instabilities of Flows and Transition to Turbulence presents a concise, up-to-date treatment of theory and applications of viscous flow instability. It covers materials from classical instability to contemporary research areas including bluff body flow instability, mixed convection flows, and application areas of aerospace and other branches of engineering. Transforms and perturbation techniques are used to link linear instability with receptivity of flows, as developed by the author. The book: Provides complete coverage of transition concepts, including receptivity and flow instability Introduces linear receptivity using bi-lateral Fourier-Laplace transform techniques Presents natural laminar flow (NLF) airfoil analysis and design as a practical application of classical and bypass transition Distinguishes strictly between instability and receptivity, which leads to identification of wall- and free stream-modes Describes energy-based receptivity theory for the description of bypass transitions Instabilities of Flows and Transition to Turbulence has evolved into an account of the personal research interests of the author over the years. A conscious effort has been made to keep the treatment at an elementary level requiring rudimentary knowledge of calculus, the Fourier-Laplace transform, and complex analysis. The book is equally amenable to undergraduate students, as well as researchers in the field.
Emphasis of this text is on the basic assumptions and the formulation of the theory of compressible flow as well as on the methods of solving problems. Published by Science Press, Beijing, distributed by VNR in the US. Annotation copyright Book News, Inc. Portland, Or.
The monograph is devoted to modern mathematical models and numerical methods for solving gas- and ?uid-dynamic problems based on them. Two interconnected mathematical models generalizing the Navier-Stokes system are presented; they differ from the Navier-Stokes system by additional dissipative terms with a small parameter as a coef?cient. The new models are called the quasi-gas-dynamic and quasi-hydrodynamic equations. Based on these equations, effective ?nite-difference algorithms for calculating viscous nonstationary ?ows are constructed and examples of numerical computations are presented. The universality, the ef?ciency, and the exactness of the algorithms constructed are ensured by the ful?llment of integral conservation laws and the theorem on entropy balance for them. The book is a course of lectures and is intended for scientists and engineers who deal with constructing numerical algorithms and performing practical calculations of gas and ?uid ?ows and also for students and postgraduate students who specialize in numerical gas and ?uid dynamics.
This first volume of two aims to help prepare students of fluid mechanics for their examinations by presenting a clear explanation of theory and application in the form of solutions to typical examination and assignment type questions. Each chapter comprises start-of-chapter learning objectives, a summary of basic theory, end-of-chapter summaries, a range of worked examples, a selection of problems with answers, and assignments to encourage further practice and consolidate understanding.
Nonlinear Waves in Elastic Media explores the theoretical results
of one-dimensional nonlinear waves, including shock waves, in
elastic media. It is the first book to provide an in-depth and
comprehensive presentation of the nonlinear wave theory while
taking anisotropy effects into account. The theory is completely
worked out and draws on 15 years of research by the authors, one of
whom also wrote the 1965 classic Magnetohydrodynamics.
This book is the first to present flow measurement as an independent branch of the measurement techniques, according to a new global and unitary approach for the measurement of fluid flow field, starting from finding its unitary fundamental bases. Furthermore, it elaborates the method of unitary analysis/synthesis and classification of compound gauging structures (CGS): the UASC - CGS method. These methods ensure, in a systematic and predictable way, both the analysis of the types of flow meters made until present (i.e. CGS) and the synthesis of new types of flowmeters. The book outlines new contributions in this field, including separately, for flow meters, and CGS: structural schemes and their unitary, unitary classification, unitary logical matrix, method of unitary analysis/synthesis and classification.
As the first of its kind, this book provides a valuable introduction for scientists and engineers interested in liquid/fluid interfaces and disperse systems to the rapidly developing area of adsorption dynamics. It is the first extensive review available on the subject of dynamics of adsorption and gives a general summary of the current state of adsorption kinetics theory and experiments. Current progress in recently designed set-ups and improved and generalised known methods for studying interfacial relaxations is reviewed. In addition, the role of the electric charge of surfactants in the adsorption process is discussed in terms of a non-equilibrium distribution of adsorbing ions in the diffuse layer. Present theories of the effect of dynamic adsorption layers on mobile surfaces, such as moving drops and bubbles, based on both diffusion and kinetic controlled adsorption models are described and efficient approximate analytical methods to solve the mathematical problem of coupling surfactant transport and hydrodynamics are introduced. The role of a dynamic adsorption layer in bubble rising, film drainage and film stabilisation and in complex processes such as flotation and microflotation is discussed. Containing more than 1100 references, the book is essential reading for industrial scientists and graduate and post-graduate students in physical, surface and colloid chemistry, physico-chemical hydrodynamics, water purification and mineral processing.
A sourcebook offering an up-to-date perspective on a variety of topics and using practical, applications-oriented data necessary for the design and evaluation of internal fluid system pressure losses. It has been prepared for the practicing engineer who understands fluid-flow fundamentals.
The five papers collected in this volume are the content of a series of lectures delivered at the Second Winter School in Fluid Dynamics held in Paseky, Czech Republic, from November 29 to December 4 1992, concerning different fields in theoretical fluid mechanics. The lectures present recent results of the authors' investigations and the majority of the contributions are original results which are not published elsewhere. Specifically, Galdi studies the two-dimensional exterior problem for the steady-state Navier-Stokes equations and Matsumura deals with some basic questions related to existence and stability of one-dimensional flow of compressible fluids. Both papers represent a difficult mathematical approach to solving deep problems. The paper by Girault furnishes a detailed and comprehensive analysis of the Stokes problem in exterior domains that has important consequences on numerical analysis. Litvinov's paper is dedicated to existence theory for a class of equations describing the motions of certain non classical fluids. Finally, the contribution from Rajagopal is a detailed and updated review of non-Newtonian fluid mechanics with emphasis on the different types of constitutive equations.
Understanding the physical properties and dynamical behavior of nanochannel flows has been of great interest in recent years and is important for the theoretical study of fluid dynamics and engineering applications in physics, chemistry, medicine, and electronics. The flows inside nanoscale pores are also important due to their highly beneficial drag and heat transfer properties. Nanoscale Flow: Advances, Modeling, and Applications presents the latest research in the multidisciplinary area of nanoscale flow. Featuring contributions from top inventors in industry, academia, and government, this comprehensive book: Highlights the current status of research on nucleate pool boiling heat transfer, flow boiling heat transfer, and critical heat flux (CHF) phenomena of nanofluids Describes two novel fractal models for pool boiling heat transfer of nanofluids, including subcooled pool boiling and nucleate pool boiling Explores thermal conductivity enhancement in nanofluids measured with a hot-wire calorimeter Discusses two-phase laminar mixed convection AL2O3-water nanofluid in an elliptic duct Explains the principles of molecular and omics imaging and spectroscopy techniques for cancer detection Analyzes fluid dynamics modeling of the tumor vasculature and drug transport Studies the properties of nanoscale particles and their impact on diagnosis, therapeutics, and theranostics Provides a brief background and review of medical nanoscale flow applications Contains useful appendices of physical constants, equations, common symbols, mathematical formulas, the periodic table, and more A valuable reference for engineers, scientists, and biologists, Nanoscale Flow: Advances, Modeling, and Applications is also designed for researchers, universities, industrial institutions, and government, giving it broad appeal.
Fluid Dynamics via Examples and Solutions provides a substantial set of example problems and detailed model solutions covering various phenomena and effects in fluids. The book is ideal as a supplement or exam review for undergraduate and graduate courses in fluid dynamics, continuum mechanics, turbulence, ocean and atmospheric sciences, and related areas. It is also suitable as a main text for fluid dynamics courses with an emphasis on learning by example and as a self-study resource for practicing scientists who need to learn the basics of fluid dynamics. The author covers several sub-areas of fluid dynamics, types of flows, and applications. He also includes supplementary theoretical material when necessary. Each chapter presents the background, an extended list of references for further reading, numerous problems, and a complete set of model solutions.
POLYMER MODELS AND EQUILIBRIUM PROPERTIES. Mechanical Models for Polymer Molecules. Equilibrium Configurations of Polymer Molecules. ELEMENTARY APPROACH TO KINETIC THEORY. Elastic Dumbbell Models. The Rigid Dumbbell and Multibead-Rod Models. The Bead-Spring Chain Models. General Bead-Rod-Spring Models. A GENERAL PHASE-SPACE KINETIC THEORY. Phase-Space Theory of Polymeric Liquids. Phase-Space Theory for Dilute Solutions. Phase-Space Theory for Concentrated Solutions and Melts. ELEMENTARY KINETIC THEORY FOR NETWORK MODELS. Network Theories for Polymer Melts and Concentrated Solutions. APPENDICES. Summary of Continuum Mechanics Notation and Results. Useful Mathematical Formulas. Author Index. Subject Index.
Aimed at undergraduate and postgraduate students in physics and applied mathematics, this textbook has been constructed as a set of problems followed by detailed solutions. With its assortment of standard problems for beginners, variations on a theme and original problems based upon new trends and theories in physics, the book aims to help students understand practical aspects of the subject. Topics are grouped under the two main headings of fluid mechanics and the electrodynamics of continuous media. They include vectors, tensors and Fourier transformations, dielectric waves in media, natural optical activity, Cherenkov radiation, non-linear interaction of waves, dynamics of ideal fluids, convection, turbulence and acoustic and shock waves, the theory of elasticity and the mechanics of liquid crystals.
Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology, and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analyzed. Part two is devoted to a self contained proof of the existence of weak (or strong) solutions to the imcompressible Navier-Stokes equations. Part three deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analyzed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinated and those in R2. In Part IV, the stability of Ekman boundary layers and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.
This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.
Superfluidity and Superconductivity, Third Edition introduces the low-temperature phenomena of superfluidity and superconductivity from a unified viewpoint. The book stresses the existence of a macroscopic wave function as a central principle, presents an extensive discussion of macroscopic theories, and includes full descriptions of relevant experimental results throughout. This edition also features an additional chapter on high-temperature superconductors. With problems at the end of most chapters as well as the careful elaboration of basic principles, this comprehensive survey of experiment and theory provides an accessible and invaluable foundation for graduate students studying low-temperature physics as well as senior undergraduates taking specialized courses.
The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge, readers are expected to be able to sufficiently enhance their skill for tackling any challenging problems they may encounter in future.
Presenting a comprehensive account of the physical concepts and theoretical approaches developed for the study of the dynamical properties of liquids (or, more generally, of high-density fluids), at a microscopic level, this book first discusses the basic dynamical phenomena to be interpreted, as well as the various experimental probes. It then proceeds to an exposition of the sophisticated theoretical techniques needed for a satisfactory account of both single particle and collective motions. The complications are faced in a stepwise fashion, with special attention to the physical content of the results. Based on the results of the progress achieved in the last decade the book provides a satisfactory understanding of most of the phenomena characterising this fascinating field.
This volume comprises the carefully revised papers of the 9th IUTAM Symposium on Laminar-Turbulent Transition, held at the Imperial College, London, UK, in September 2019. The papers focus on the leading research in understanding transition to turbulence, which is a challenging topic of fluid mechanics and arises in many modern technologies as well as in nature. The proceedings are of interest for researchers in fluid mechanics and industry who have to handle these types of problems, such as in the aeronautical sector.
This book provides 1-page short biographies of scientists and engineers having worked in the areas of hydraulic engineering and fluid dynamics in the USA. On each page, a notable individual is highlighted by: (1) Exact dates and locations of birth and death; (2) Educational and professional details, including also awards received; (3) Reasons for inclusion in the book by highlighting key publications; (4) Short bibliography including both individual's own, and source literature such as Who's Who details, or origination details of the portrait; (5) In most cases, an illustrative portrait or photo showing, for example, a book cover of the individual, or photograph of a typical work such as a dam or a canal. This volume includes almost 1,000 individuals, of which there are only 2 women. The book also provides a detailed Index, and a 2-page list of individuals (normally born in Europe) listed in previous volumes (1 and 2), but having a relation to this volume 3. The book also contains a map of the USA highlighting the major American rivers, with a close relation to projects carried out by several of the individuals presented in the book. This book provides a beautiful overview of the many scientists and engineers having contributed to the current knowledge in hydraulic engineering and fluid mechanics. The author made every effort in compiling the most important hydraulicians of the USA in this work as it will become much more difficult in future decades to find biographical details on these, given the current policy that so few memoirs or necrologues are published.
Understanding the physical properties and dynamical behavior of nanochannel flows has been of great interest in recent years and is important for the theoretical study of fluid dynamics and engineering applications in physics, chemistry, medicine, and electronics. The flows inside nanoscale pores are also important due to their highly beneficial drag and heat transfer properties. Nanoscale Flow: Advances, Modeling, and Applications presents the latest research in the multidisciplinary area of nanoscale flow. Featuring contributions from top inventors in industry, academia, and government, this comprehensive book: Highlights the current status of research on nucleate pool boiling heat transfer, flow boiling heat transfer, and critical heat flux (CHF) phenomena of nanofluids Describes two novel fractal models for pool boiling heat transfer of nanofluids, including subcooled pool boiling and nucleate pool boiling Explores thermal conductivity enhancement in nanofluids measured with a hot-wire calorimeter Discusses two-phase laminar mixed convection AL2O3-water nanofluid in an elliptic duct Explains the principles of molecular and omics imaging and spectroscopy techniques for cancer detection Analyzes fluid dynamics modeling of the tumor vasculature and drug transport Studies the properties of nanoscale particles and their impact on diagnosis, therapeutics, and theranostics Provides a brief background and review of medical nanoscale flow applications Contains useful appendices of physical constants, equations, common symbols, mathematical formulas, the periodic table, and more A valuable reference for engineers, scientists, and biologists, Nanoscale Flow: Advances, Modeling, and Applications is also designed for researchers, universities, industrial institutions, and government, giving it broad appeal.
This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows and certain integrable systems. The topics are interdisciplinary and extend from mathematics, mechanics and physics to mechanical engineering, and the approach is very fundamental. The main theme of this book is a unified formulation to understand dynamical evolutions of physical systems within mathematical ideas of Riemannian geometry and Lie groups by using well-known examples. Underlying mathematical concepts include transformation invariance, covariant derivative, geodesic equation and curvature tensors on the basis of differential geometry, theory of Lie groups and integrability. These mathematical theories are applied to physical systems such as free rotation of a top, surface wave of shallow water, action principle in mechanics, diffeomorphic flow of fluids, vortex motions and some integrable systems.In the latest edition, a new formulation of fluid flows is also presented in a unified fashion on the basis of the gauge principle of theoretical physics and principle of least action along with new type of Lagrangians. A great deal of effort has been directed toward making the description elementary, clear and concise, to provide beginners easy access to the topics.
Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fields of science and engineering, its use for hydraulics has so far been limited to simple cases. The book compares numerical results with laboratory experiments and field data, and includes a set of tests that can be used for a wide range of applications. Provides step-by-step implementation details Presents the different forms in which the shallow water flow equations can be written Places emphasis on the details and modifications required to apply the scheme to real-world flow problems This text enables readers to readily understand and develop an efficient computer simulation model that can be used to model flow, contaminant transport, and other aspects in rivers and coastal environments. It is an ideal resource for practicing environmental engineers and researchers in the area of computational hydraulics and fluid dynamics, and graduate students in computational hydraulics.
This is the third edition of a book which has consistently fulfilled its aim of making a low-priced collection of tables available to the student and practicing engineer. In the second edition all parameters were made non-dimensional. This new edition now includes and additional table of Isentropic flow; it is hoped that this inclusion will significantly increase the range of application of the book's data.
|
![]() ![]() You may like...
Astronomical Image and Data Analysis
J.-L. Starck, F. Murtagh
Hardcover
R5,629
Discovery Miles 56 290
Scientific Detectors for Astronomy - The…
P Amico, James W. Beletic
Hardcover
R8,672
Discovery Miles 86 720
Northern Lights - The Definitive Guide…
Tom Kerss, Royal Observatory Greenwich, …
Paperback
Observation of the Earth System from…
Jakob Flury, Reiner Rummel, …
Hardcover
R5,688
Discovery Miles 56 880
Totality - Eclipses of the Sun
Mark Littmann, Fred Espenak, …
Hardcover
|