![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > General
The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations.
Proceedings of the14th European Microscopy Congress, held in Aachen, Germany, 1-5 September 2008. Jointly organised by the European Microscopy Society (EMS), the German Society for Electron Microscopy (DGE) and the local microscopists from RWTH Aachen University and the Research Centre J lich, the congress brings together scientists from Europe and from all over the world. The scientific programme covers all recent developments in the three major areas of instrumentation and methods, materials science and life science.
The fifth ERCOFfAC workshop 'Direct and Large-Eddy Simulation-5' (DLES-5) was held at the Munich University of Technology, August 27-29, 2003. It is part of a series of workshops that originated at the University of Surrey in 1994 with the intention to provide a forum for presentation and dis cussion of recent developments in the field of direct and large-eddy simula tion. Over the years the DLES-series has grown into a major international venue focussed on all aspects of DNS and LES, but also on hybrid methods like RANSILES coupling and detached-eddy simulation designed to provide reliable answers to technical flow problems at reasonable computational cost. DLES-5 was attended by 111 delegates from 15 countries. Its three-day pro gramme covered ten invited lectures and 63 original contributions partially pre sented in parallel sessions. The workshop was financially supported by the fol lowing companies, institutions and organizations: ANSYS Germany GmbH, AUDI AG, BMW Group, ERCOFfAC, FORTVER (Bavarian Research Asso ciation on Combustion), JM BURGERS CENTRE for Fluid Dynamics. Their help is gratefully acknowledged. The present Proceedings contain the written versions of nine invited lectures and fifty-nine selected and reviewed contributions which are organized in four parts: 1 Issues in LES modelling and numerics 2 Laminar-turbulent transition 3 Turbulent flows involving complex physical phenomena 4 Turbulent flows in complex geometries and in technical applications.
This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy-Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.
A fascinating insight into the state-of-the-art in silicon microphotonics and on what we can expect in the near future. The book presents an overview of the current understanding of getting light from silicon. It concentrates mainly on low dimensional silicon structures, like quantum dots, wires and wells, but covers also alternative approaches like porous silicon and the doping of silicon with rare-earths. The emphasis is on the experimental and theoretical achievements concerning the optoelectronic properties of confined silicon structures obtained during recent years. Silicon based photonic crystals are in particular considered. An in depth discussion of the route towards a silicon laser is presented.
The Advanced Study Institute on "Theoretical Aspects and New Developments in Magneto-Optics" was held at the University of Antwerpen (R.U.C.A.), from July 16 to July 28, 1979. The Institute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert (Belgium), A.S.L.K. (Belgium), Bell Telephone Mfg. CO. (Belgium), Esso Belgium, Generale Bankmaatschappij (Belgium), General Motors (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), Metallurgie Hoboken-Over pelt (Belgium), National Science Foundation (U.S.A). A total of 60 lecturers and participants attended the Institute. Scope of the Institute The magneto-optic phenomena are due to the change of the polarizability of a substance as a result of the splitting of the quantized energy bands. Most of these phenomena were discovered during the second half of this century. The understanding of the magneto-optical effects of all kinds, however, was brought by the advent of quantum mechanics, and since then important progress has been made in many fields of experimental methods and techniques."
Quantum physicist, New York Times bestselling author, and BBC host Jim Al-Khalili offers a fascinating and illuminating look at what physics reveals about the world Shining a light on the most profound insights revealed by modern physics, Jim Al-Khalili invites us all to understand what this crucially important science tells us about the universe and the nature of reality itself. Al-Khalili begins by introducing the fundamental concepts of space, time, energy, and matter, and then describes the three pillars of modern physics-quantum theory, relativity, and thermodynamics-showing how all three must come together if we are ever to have a full understanding of reality. Using wonderful examples and thought-provoking analogies, Al-Khalili illuminates the physics of the extreme cosmic and quantum scales, the speculative frontiers of the field, and the physics that underpins our everyday experiences and technologies, bringing the reader up to speed with the biggest ideas in physics in just a few sittings. Physics is revealed as an intrepid human quest for ever more foundational principles that accurately explain the natural world we see around us, an undertaking guided by core values such as honesty and doubt. The knowledge discovered by physics both empowers and humbles us, and still, physics continues to delve valiantly into the unknown. Making even the most enigmatic scientific ideas accessible and captivating, this deeply insightful book illuminates why physics matters to everyone and calls one and all to share in the profound adventure of seeking truth in the world around us.
Based on research on the links between deep brain stimulation and its applications in the field of psychiatry, the history of techniques is of great importance in this book in order to understand the scope of the fields of application of electricity in brain sciences. The concepts of brain electricity, stimulation, measurement and therapy are further developed to identify lines of convergence, ruptures and conceptual perspectives for a materialistic understanding of human nature that emerged during the 18th century. In an epistemological posture, at the crossroads of the concepts of epistemes, as stated by Foucault, and phenomenotechnics, as conceived by Bachelard, the analyses focus on the technical content of the theories while inscribing them in the language and specificities of each era.
Ithasbeenstatedthatourknowledgedoublesevery20years,butthatmaybe an understatement when considering the Life Sciences. A series of discoveries and inventions have propelled our knowledge from the recognition that DNA isthegeneticmaterialtoabasicmolecularunderstandingofourselvesandthe living world around us in less than 50 years. Crucial to this rapid progress was thediscoveryofthedouble-helicalstructureofDNA,whichlaidthefoundation forallhybridizationbasedtechnologies. Thediscoveriesofrestrictionenzymes, ligases, polymerases, combined with key innovations in DNA synthesis and sequencing ushered in the era of biotechnologyas a new science with profound sociological and economic implications that are likely to have a dominating in?uence on the development of our society during this century. Given the process by which science builds on prior knowledge, it is perhaps unfair to single out a few inventions and credit them with having contributed most to thisavalancheofknowledge. Yet,therearesurelysomethatwillberecognized as having had a more profound impact than others, not just in the furthering of our scienti?c knowledge, but by leveraging commercial applications that provide a tangible return to our society. The now famous Polymerase Chain Reaction, or PCR, is surely one of those, as it has uniquely catalyzed molecular biology during the past 20 years, and continues to have a signi?cant impact on all areas that involve nucleic acids, ranging from molecular pathology to forensics. Ten years ago micro- ray technology emerged as a new and powerful tool to study nucleic acid - quences in a highly multiplexed manner, and has since found equally exciting and useful applications in the study of proteins, metabolites, toxins, viruses, whole cells and even tissues.
For the calculus-based General Physics course primarily taken by engineers and science majors (including physics majors). This long-awaited and extensive revision maintains Giancoli's reputation for creating carefully crafted, highly accurate and precise physics texts. Physics for Scientists and Engineers combines outstanding pedagogy with a clear and direct narrative and applications that draw the student into the physics. The new edition also features an unrivaled suite of media and on-line resources that enhance the understanding of physics. This book is written for students. It aims to explain physics in a readable and interesting manner that is accessible and clear, and to teach students by anticipating their needs and difficulties without oversimplifying. Physics is a description of reality, and thus each topic begins with concrete observations and experiences that students can directly relate to. We then move on to the generalizations and more formal treatment of the topic. Not only does this make the material more interesting and easier to understand, but it is closer to the way physics is actually practiced.
The spectacular culinary creations of modern cuisine are the stuff of countless articles and Instagram feeds. But to a scientist they are also perfect pedagogical explorations into the basic scientific principles of cooking. In Science and Cooking, Harvard professors Michael Brenner, Pia Soerensen and David Weitz bring the classroom to your kitchen to teach the physics and chemistry underlying every recipe. Science and Cooking answers questions such as why we knead bread, what determines the temperature at which we cook a steak or the how much time our chocolate chip cookies should spend in the oven, through fascinating lessons ranging from the role of pressure and boiling points in pecan praline to that of microbes in your coffee. With beautiful full-colour illustrations and recipes, hands-on experiments, and engaging introductions from world-renowned chefs Ferran Adria and Jose Andres, Science and Cooking will change the way readers approach both subjects-in their kitchens and beyond.
This book is a collection of carefully reviewed papers presented during the HP-SEE User Forum, the meeting of the High-Performance Computing Infrastructure for South East Europe s (HP-SEE) Research Communities, held in October 17-19, 2012, in Belgrade, Serbia. HP-SEE aims at supporting and integrating regional HPC infrastructures; implementing solutions for HPC in the region; and making HPC resources available to research communities in SEE, region, which are working in a number of scientific fields with specific needs for massively parallel execution on powerful computing resources. HP-SEE brings together research communities and HPC operators from 14 different countries and enables them to share HPC facilities, software, tools, data and research results, thus fostering collaboration and strengthening the regional and national human network; theproject specifically supports research groups in the areas of computational physics, computational chemistry and the life sciences. The contributions presented in this book are organized in four main sections: computational physics; computational chemistry; the life sciences; and scientific computing and HPC operations. "
The book reviews the synergism between various fields of research that are confronted with networks, like genetic and metabolic networks, social networks, the Internet and ecological systems. In many cases, the interacting networks manifest so-called emergent properties that are not possessed by any of the individual components. This means that the detailed knowledge of the components is insufficient to describe the whole system. Recent work has indicated that networks in nature have so-called scale-free characteristics, and the associated dynamic network modelling shows unexpected results such as an amazing robustness against accidental failures. Modelling the signal transduction networks in bioprocesses as in living cells is a challenging interdisciplinary research area...
The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations reading the books on quasilinear elliptic and parabolic equations written by O.A. Ladyzhenskaya with V.A. Solonnikov and N.N. Uraltseva. Her results and methods on the Navier-Stokes equations, and other mathematical problems in the theory of viscous fluids, nonlinear partial differential equations and systems, the regularity theory, some directions of computational analysis are well known. So it is no surprise that these two volumes attracted leading specialists in partial differential equations and mathematical physics from more than 15 countries, who present their new results in the various fields of mathematics in which the results, methods, and ideas of O.A. Ladyzhenskaya played a fundamental role. Nonlinear Problems in Mathematical Physics and Related Topics I presents new results from distinguished specialists in the theory of partial differential equations and analysis. A large part of the material is devoted to the Navier-Stokes equations, which play an important role in the theory of viscous fluids. In particular, the existence of a local strong solution (in the sense of Ladyzhenskaya) to the problem describing some special motion in a Navier-Stokes fluid is established. Ladyzhenskaya's results on axially symmetric solutions to the Navier-Stokes fluid are generalized and solutions with fast decay of nonstationary Navier-Stokes equations in the half-space are stated. Application of the Fourier-analysis to the study of the Stokes wave problem and some interesting properties of the Stokes problem are presented. The nonstationary Stokes problem is also investigated in nonconvex domains and some Lp-estimates for the first-order derivatives of solutions are obtained. New results in the theory of fully nonlinear equations are presented. Some asymptotics are derived for elliptic operators with strongly degenerated symbols. New results are also presented for variational problems connected with phase transitions of means in controllable dynamical systems, nonlocal problems for quasilinear parabolic equations, elliptic variational problems with nonstandard growth, and some sufficient conditions for the regularity of lateral boundary. Additionally, new results are presented on area formulas, estimates for eigenvalues in the case of the weighted Laplacian on Metric graph, application of the direct Lyapunov method in continuum mechanics, singular perturbation property of capillary surfaces, partially free boundary problem for parametric double integrals.
The micromechanics of random structure heterogeneous materials is a burgeoning multidisciplinary research area which overlaps the scientific branches of materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. Micromechanics of Heterogeneous Materials is a true reflection of the far-reaching multidisciplinary range of this field. The book features unified rigorous theoretical methods of applied mathematics and statistical physics in material science of microheterogeneous media. The prediction of the behavior of heterogeneous materials by the use of properties of constituents and their microstructure is a central issue of micromechanics. This book is the first in micromechanics with a useful and effective demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.
This book discusses the geometrical aspects of Kaluza-Klein theories. The ten chapters cover topics from the differential and Riemannian manifolds to the reduction of Einstein-Yang-Mills action. It would definitely prove interesting reading to physicists and mathematicians, theoretical and experimental.
The theory of nonlinear, complex systems has become by now a proven problem-solving approach in the natural sciences. And it is now also recognized that many if not most of our social, ecological, economical and political problems are essentially of a global, complex and nonlinear nature. And it is now further accepted than any holistic perspective of the human mind and brain can hardly be achieved by any other approach. In this wide-ranging, scholarly but very concise treatment, physicist, computer scientist and philosopher Klaus Mainzer discusses, in essentially nontechnical language, the common framework behind these ideas and challenges. Emphasis is given to the evolution of new structures in natural and cultural systems and we are lead to see clearly how the new integrative approach can give insights not available from traditional reductionistic methods. The fifth edition enlarges and revises almost all sections and supplements an entirely new chapter on the complexity of economic systems. From the reviews of the fourth edition: "This book is ambitious, incredibly erudite with 22 pages of references, and is indisputably clearly and beautifully written and illustrated. It is perfectly suited to a first course on the science of complexity. Even beginners and young graduate students will have something to learn from this book." (Andre Hautot, Physicalia, Vol. 57 (3), 2005) "All-in-all, this highly recommended book is a wonderful resource for intuitive basic ideas in the need of rigorous formulation." (Albert A. Mullin, Zentralblatt MATH, vol. 1046, 2004) "Readers of this book will enjoy Mainzer's exposition, which is based on a tight coupling between classical andhistorical concepts from Plato and Aristotle to modern, mathematical and physical developments . Every chapter begins with a section designed to orient the reader to the perspective of philosophical developments through the ages pertinent to the topic at hand. The author takes pains to point out essential differences between classical science and the science of complexity. Thinking in Complexity is an outstandingly readable book." (Anutosh Moitra, The Industrial Physicist, August/September, 2004)
Proceedings of the14th European Microscopy Congress, held in Aachen, Germany, 1-5 September 2008. Jointly organised by the European Microscopy Society (EMS), the German Society for Electron Microscopy (DGE) and the local microscopists from RWTH Aachen University and the Research Centre J lich, the congress brings together scientists from Europe and from all over the world. The scientific programme covers all recent developments in the three major areas of instrumentation and methods, materials science and life science.
Stephen Webb, author of WHERE IS EVERYBODY?, takes the interested amateur on a thrilling and enlightening tour of the amazing, even bizarre, new ideas of modern physics, including alternatives to the Big Bang, parallel universes, and an imaginary trip to the other side of the black hole. |
![]() ![]() You may like...
Societal Contexts of Child Development…
Elizabeth T Gershoff, Rashmita S. Mistry, …
Hardcover
R2,288
Discovery Miles 22 880
Non-Hydrostatic Free Surface Flows
Oscar Castro-Orgaz, Willi H. Hager
Hardcover
R6,094
Discovery Miles 60 940
|