![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > General
This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.
This book contains select invited chapters on the latest research in numerical fluid dynamics and applications. The book aims at discussing the state-of-the-art developments and improvements in numerical fluid dynamics. All the chapters are presented for approximating and simulating how these methods and computations interact with different topics such as shock waves, non-equilibrium single and two-phase flows, elastic human-airway, and global climate. In addition to the fundamental research involving novel types of mathematical sciences, the book presents theoretical and numerical developments in fluid dynamics. The contributions by well-established global experts in fluid dynamics have brought different features of numerical fluid dynamics in a single book. The book serves as a useful resource for high-impact advances involving computational fluid dynamics, including recent developments in mathematical modelling, numerical methods such as finite volume, finite difference and finite element, symbolic computations, and open numerical programs such as OpenFOAM software. The book addresses interdisciplinary topics in industrial mathematics that lie at the forefront of research into new types of mathematical sciences, including theory and applications. This book will be beneficial to industrial and academic researchers, as well as graduate students, working in the fields of natural and engineering sciences. The book will provide the reader highly successful materials and necessary research in the field of fluid dynamics.
Professor Atiyah is one of the greatest living mathematicians and is renowned in the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still actively involved in the mathematics community. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into seven volumes, with the first five volumes divided thematically and the sixth and seventh arranged by date. This seven volume set of the collected works of Professor Sir Michael Atiyah, includes: Collected Works: Volume 1: Early Papers; General Papers Collected Works: Volume 2: K-Theory Collected Works: Volume 3: Index Theory: 1 Collected Works: Volume 4: Index Theory: 2 Collected Works: Volume 5: Gauge Theories Collected Works: Volume 6: Publications between 1987 and 2002 New for 2014: Collected Works: Volume 7: 2002-2013, including Sir Michael's work on skyrmions; K-theory and cohomology; geometric models of matter; curvature, cones and characteristic numbers; and reflections on the work of Riemann, Einstein and Bott.
Measurement is an essential activity in every branch of technology and science, the fourth edition of this successful text has been extensively extended and updated to include new developments in measurement devices and technology. Principles of Measurement Systems, 4/e provides a coherent and integrated approach to the topic, covering the main techniques and devices used, together with relevant theory applications, for both mechanical and electronic systems.
* Written in a fluid and accessible style, replete with exercises; ideal for undergraduate courses * Suitable for students of land surveying and natural science, as well as professionals, but also for map amateurs
Topology is the mathematical study of the most basic geometrical structure of a space. Mathematical physics uses topological spaces as the formal means for describing physical space and time. This book proposes a completely new mathematical structure for describing geometrical notions such as continuity, connectedness, boundaries of sets, and so on, in order to provide a better mathematical tool for understanding space-time. This is the initial volume in a two-volume set, the first of which develops the mathematical structure and the second of which applies it to classical and Relativistic physics. The book begins with a brief historical review of the development of mathematics as it relates to geometry, and an overview of standard topology. The new theory, the Theory of Linear Structures, is presented and compared to standard topology. The Theory of Linear Structures replaces the foundational notion of standard topology, the open set, with the notion of a continuous line. Axioms for the Theory of Linear Structures are laid down, and definitions of other geometrical notions developed in those terms. Various novel geometrical properties, such as a space being intrinsically directed, are defined using these resources. Applications of the theory to discrete spaces (where the standard theory of open sets gets little purchase) are particularly noted. The mathematics is developed up through homotopy theory and compactness, along with ways to represent both affine (straight line) and metrical structure.
This monograph discusses specific examples of selfdual gauge field structures, including the Chern Simons model, the abelian Higgs model, and Yang Mills gauge field theory. The author builds a foundation for gauge theory and selfdual vortices by introducing the basic mathematical language of gauge theory and formulating examples of Chern Simons Higgs theories (in both abelian and non-abelian settings). Thereafter, the Electroweak theory and self-gravitating Electroweak strings are examined. The final chapters treat elliptic problems involving Chern Simmons models, concentration-compactness principles, and Maxwell Chern Simons vortices.
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
Together with "Theory of Operator Algebras I, III" (EMS 124 and 127), this book, written by one of the most prominent researchers in the field of operator algebras, presents the theory of von Neumann algebras and non-commutative integration focusing on the group of automorphisms and the structure analysis. It is part of the recently developed part of the "Encyclopaedia of Mathematical Sciences" on operator algebras and non-commutative geometry (see http://www.springer.de/math/ems/index.html). The book provides essential and comprehensive information for graduate students and researchers in mathematics and mathematical physics.
The book serves as a primary textbook of partial differential equations (PDEs), with due attention to their importance to various physical and engineering phenomena. The book focuses on maintaining a balance between the mathematical expressions used and the significance they hold in the context of some physical problem. The book has wider outreach as it covers topics relevant to many different applications of ordinary differential equations (ODEs), PDEs, Fourier series, integral transforms, and applications. It also discusses applications of analytical and geometric methods to solve some fundamental PDE models of physical phenomena such as transport of mass, momentum, and energy. As far as possible, historical notes are added for most important developments in science and engineering. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
The presentations at this NASA-hosted Symposium in honor of Mino Freund will touch upon the fields, to which his prolific mind has made significant contributions. These include low temperature physics, cosmology, and nanotechnology with its wide-ranging applicability to material science, neuroscience, Earth sciences and satellite technology. To learn more about Mino s career you can download the "Tribute" http: //multimedia.seti.org/mino/Tribute.pdf which outlines his journey from (i) low-temperature physics and superconductivity at the ETH Zurich to (ii) building one remarkable milliKelvin refrigerator for the US-Japan IRTS mission at UC Berkeley and ISAS in Japan to (iii) a decade in cosmology, to (iv) being on the micro-bolometer team at NASA Goddard for the HAWC instrument on SOFIA, to (v) developing at AFRL the nanotechnology portfolio for the entire Air Force. This was followed by six years at the NASA Ames Research Center, where Mino formulated his far-ahead ideas about swarms of capable nanosats circling the Earth, which have since started to become a reality. He engaged in a broad range of nanotechnology projects, including novel applications in neuroscience well before he himself was struck by the deadly brain tumor."
The second conference on Fractal Geometry and Stochastics was held at Greifs wald/Koserow, Germany from August 28 to September 2, 1998. Four years had passed after the first conference with this theme and during this period the interest in the subject had rapidly increased. More than one hundred mathematicians from twenty-two countries attended the second conference and most of them presented their newest results. Since it is impossible to collect all these contributions in a book of moderate size we decided to ask the 13 main speakers to write an account of their subject of interest. The corresponding articles are gathered in this volume. Many of them combine a sketch of the historical development with a thorough discussion of the most recent results of the fields considered. We believe that these surveys are of benefit to the readers who want to be introduced to the subject as well as to the specialists. We also think that this book reflects the main directions of research in this thriving area of mathematics. We express our gratitude to the Deutsche Forschungsgemeinschaft whose financial support enabled us to organize the conference. The Editors Introduction Fractal geometry deals with geometric objects that show a high degree of irregu larity on all levels of magnitude and, therefore, cannot be investigated by methods of classical geometry but, nevertheless, are interesting models for phenomena in physics, chemistry, biology, astronomy and other sciences."
This is the first book written on using Blender (an open-source visualization suite widely used in the entertainment and gaming industries) for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts.
This book deals with the mathematical properties of dimensioned
quantities, such as length, mass, voltage, and viscosity.
Book 2 of the Physics is arguably the best introduction to Aristotle's work, both because it explains some of his central concepts, such as nature and the four causes, and because it asks questions that are still debated today: Is chance something real? If so, what? Can nature be explained by chance, necessity and natural selection, or is it purposive? Philoponus' commentary is not only a valuable guide, but also a work of Neoplatonism with its own views on causation, the Providence of Nature, the problem of evil and the immortality of the soul. Includes notes on the text, and English-Greek glossary and index.
With conventional materials contributing greatly to environmental waste, biodegradable and natural composites have grown in interest and display low environmental impact at low cost across a wide range of applications. This book provides an overview of different biodegradable and natural composites and focuses on efforts into increasing their mechanical performance to extend their capabilities and applications.
Proceedings from the 2013 LTEC conference in Kaohsiung, Taiwan. The papers examine diverse aspects of Learning Technology for Education in Cloud environments, including social, technical and infrastructure implications. Also addressed is the question of how cloud computing can be used to design applications to support real time on demand learning using technologies. The workshop proceedings provide opportunities for delegates to discuss the latest research in TEL (Technology Enhanced Learning) and its impacts for learners and institutions, using cloud technologies.
This proceedings is focused on the emerging concept of Collaborative Innovation Networks (COINs). COINs are at the core of collaborative knowledge networks, distributed communities taking advantage of the wide connectivity and the support of communication technologies, spanning beyond the organizational perimeter of companies on a global scale. The book presents the refereed conference papers from the 7th International Conference on COINs, October 8-9, 2019, in Warsaw, Poland. It includes papers for both application areas of COINs, (1) optimizing organizational creativity and performance, and (2) discovering and predicting new trends by identifying COINs on the Web through online social media analysis. Papers at COINs19 combine a wide range of interdisciplinary fields such as social network analysis, group dynamics, design and visualization, information systems and the psychology and sociality of collaboration, and intercultural analysis through the lens of online social media. They will cover most recent advances in areas from leadership and collaboration, trend prediction and data mining, to social competence and Internet communication.
Quantum field theory is one of most central constructions in 20th century th- retical physics, and it continues to develop rapidly in many different directions. The aim of the workshop "New Developments in Quantum Field Theory," which was held in Zakopane, Poland, June 14-20, 1997, was to capture a broad selection of the most recent advances in this field. The conference was sponsored by the Scientific and - vironmental Affairs Division of NATO, as part of the Advanced Research Workshop series. This book contains the proceedings of that meeting. Major topics covered at the workshop include quantized theories of gravity, string theory, conformal field theory, cosmology, field theory approaches to critical phenomena and the renormalization group, matrix models, and field theory techniques applied to the theory of turbulence. One common theme at the conference was the use of large-Nmatrix models to obtain exact results in a variety of different disciplines. For example, it has been known for several years that by taking a suitable double-scaling limit, certain string theories (or two-dimensional quantum gravity coupled to matter) can be re-obtained from the large-Nexpansion of matrix models. There continues to be a large activity in this area of research, which was well reflected by talks given at our workshop. Remarkably, large- Nmatrix models have very recently - just a few months before our meeting - been shown to have yet another deep relation to string theory.
This book is an outgrowth of the sixth international conference on integral methods in science and engineering. The chapters focus on the solution of mathematical models from various physical domains, using integral methods in conjunction with approximation schemes. Integral Methods in Science and Engineering describes the construction and application of various analytic and numerical integration techniques. Problem solving in areas such as solid mechanics, fluid dynamics, thermoelasticity, plates and shells, liquid crystals, diffusion and diffraction theory, Hamiltonian systems, resonance, nonlinear waves, plasma, flight dynamics, and structural networks are presented in an accessible manner. The book offers a vehicle for the quick dissemination of new results in these domains, and will help create an ideal environment for investigative interdisciplinary study among a variety of research areas. Topics: * Offers an illustration by prominent researchers of efficient methods of solution with numerical results and rigorous analytic methods * Presents applications of integral methods to a wide variety of mathematical and physical problems * Provides new results in the study of various physical and mechanical models * A clear, concise focus on a class of methodologies rather than a specific field of study This book is a practical resource for a broad audience of professionals, researchers, and practitioners in applied mathematics, mechanical engineering, and theoretical physics, who are interested in current research in ordinary and partial differential equations, integral equations, numerical analysis, mechanics of solids, fluid mechanics, and mathematical physics.Graduate students will find this a helpful guide to the wide range of applications that integral methods have in science and engineering.
The XV-th International Congress on Mathematical Physics took place in Rio de Janeiro, on August 5-11, 2006. I believe it was a very successful and enjoyable meeting. It is very fortunate for our community that Latin America, and especially Brazil, in decades has become the place where all ?elds of intellectual activity which are traditionally regarded as part of Mathematical Physics are developing with steady pace and remarkable quality. Another important aspect of this devel- mentis thatbesidesareaswhichalreadyhaveworldwiderecognitionandlongsta- ing tradition in Brazil such as Dynamical Systems, Statistical Mechanics, Probab- ity Theory, etc. , there is intensive growth in other directions such as String Theory and Algebraic Geometry. Brazil's major universities and research institutes such as IMPA and CBPF are successfully bringing up a new generation of researchers in our ?eld. Thus it was especially pleasant to see that among more than 500 participants of the Congress, the majority was constituted by young researchers and graduate students. Given the enormous range of subjects covered during the Congress, and the - versity of scienti?c contributions, it would be pointless to summarize the contents here-the quality is re? ected in these pages. Traditionally, besides its very intense scienti?c program, the Congress was the occasion for the award of the Henri Poincare Prizes of the IAMP, sponsored by the Daniel Iagolnitzer Foundation. The Laureates for the year 2006 were Ludwig Faddeev, David Ruelle and Edward Witten.
An examination of the latest materials and applications in pulsed laser deposition Following up on the 1994 book Pulsed Laser Deposition of Thin Films, this current version summarizes the state of the technology in pulsed laser deposition (PLD) techniques, new materials that have been grown, and their applications. Unlike the 1994 book, which focused on technique, the primary focus here is on the recent explosive growth of applications, including optical devices, electronic materials, sensors and actuators, and biomaterials. Each one of the chapters has been written by one or more leading experts. Collectively, the editor and authors represent some of the most important innovators in the field. The book is divided into five logical sections: Section 1 introduces the technique of PLD of complex materials, focusing on the latest advances that are helping this technology make the bridge from R&D to commercial applications. Section 2 discusses the use of PLD in non-standard or unconventional formats, including resonant infrared laser-induced PLD and matrix-assisted growth techniques for deposition of polymers or other fragile species. The final chapter in this section addresses industrial scale-up, a critical issue in making PLD technology fully commercial. Section 3 demonstrates the unique capability of PLD for a diverse range of materials and discipline-specific applications, including coating powders for drug delivery systems. Section 4 examines a range of application areas, focusing on broad classes of materials and devices, including waveguide materials and biomaterials. Section 5 presents two of the most recent and promising areas of exploration: laser ablative synthesis ofsingle-wall carbon nanotubes and thin film growth of quasicrystals. For researchers in thin films, this is an essential reference that brings them fully up to date with all the most recent findings and applications that are taking PLD from the laboratory to full commercial fabrication.
This book presents improved numerical techniques and applied computer-aided simulations as a part of emerging trends in mechatronics in all areas related to complex fluids, with particular focus on using a combination of modeling, theory, and simulation to study systems that are complex due to the rheology of fluids (i.e., ceramic pastes, polymer solutions and melts, colloidal suspensions, emulsions, foams, micro-/nanofluids, etc.) and multiphysics phenomena in which the interactions of various effects (thermal, chemical, electric, magnetic, or mechanical) lead to complex dynamics. The areas of applications span materials processing, manufacturing, and biology. |
You may like...
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R5,660
Discovery Miles 56 600
|