![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > General
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word " ") as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are written in an accessible manner and lavishly illustrated. The book will help computer and robotic scientists and engineers to understand mechanisms of decentralised functioning of robotic collectives and to design future and emergent reconfigurable, parallel and distributed robotic systems.
The present volume on Methods and Applications of Nonlinear Dynamics arose mainly from lectures given at the First International Course on Nonlinear Dynamics, which took place in Medellin, Colombia, on 1-5 September 1986. The aims of the Course were to discuss some of the fundamental theoretical ideas of modem nonlinear dynamics and their application to selected areas of physics, and also to help the participants to bridge the gap between textbook presentations and the contemporary research literature. The lectures were intended for and delivered to a PhD-level audience composed of physicists and mathematicians. They were not primarily intended for experts, but rather for scientists interested in performing experimental or theoretical research on nonlinear dynamical phenomena occurring in real physical systems.
SMath is a free mathematical notebook program similar to Mathcad that provides many options for studying and solving complex mathematical equations.
The field of Nanotechnology, which aims at exploiting advances in the fabrication and controlled manipulation of nanoscale objects, is attracting worldwide attention. This attention is predicated upon the fact that obtaining early supremacy in this field of miniaturization may well be the key to dominating the world economy of the 21st century, and beyond. NanoMEMS exploits the convergence between nanotechnology and microelectromechanical systems (MEMS) brought about by advances in the ability to fabricate nanometer-scale electronic and mechanical device structures. In this context, NanoMEMS-based applications will be predicated upon a multitude of physical phenomena, e.g., electrical, optical, mechanical, magnetic, fluidic, quantum effects and mixed domain. Principles and Applications of NanoMEMS Physics presents the first unified exposition of the physical principles at the heart of NanoMEMS-based devices and applications. In particular, after beginning with a comprehensive presentation of the fundamentals and limitations of nanotechnology and MEMS fabrication techniques, the book addresses the physics germane to this dimensional regime, namely, quantum wave-particle phenomena, including, the manifestation of charge discreteness, quantized electrostatic actuation, and the Casimir effect, and quantum wave phenomena, including, quantized electrical conductance, quantum interference, Luttinger liquids, quantum entanglement, superconductivity and cavity quantum electrodynamics. Potential building blocks are also addressed for NanoMEMS applications, including, nanoelectromechanical quantum circuits and systems such as charge detectors, the which-path electron interferometer, and theCasimir oscillator, as well as a number of quantum computing implementation paradigms. Finally, NanoMEMS applications in photonics are addressed, including nanophotonic light sources and plasmonic devices.
This book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like "what is the minimum energy required to perform a computation?", "what is the ultimate computational speed that a computer can achieve?" or "how long can a memory last", are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.
Maximum entropy and Bayesian methods have fundamental, central roles in scientific inference, and, with the growing availability of computer power, are being successfully applied in an increasing number of applications in many disciplines. This volume contains selected papers presented at the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods. It includes an extensive tutorial section, and a variety of contributions detailing application in the physical sciences, engineering, law, and economics. Audience: Researchers and other professionals whose work requires the application of practical statistical inference.
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.
Pulsed-Power Systems describes the physical and technical foundations for the production and application of high-voltage pulses of very high-power and high-energy character. In the initial chapters, it addresses materials, components and the most common diagnostics. In the second part, three categories of applications with scientific and industrial relevance are detailed: production of strong pulsed electric and magnetic fields, intense radiation sources and pulsed electric (plasma) discharges.
John Stachel, the author of this collection of 37 published and unpublished articles on Albert Einstein, has written about Einstein and his work for over 40 years. Trained as a theoretical physicist specializing in the theory of relativity, he was chosen as the founding editor of The Collected papers of Albert Einstein 25 years ago, and is currently Director of the Boston University Center for Einstein Studies. Based on a detailed study of documentary evidence, much of which was newly discovered in the course of his work, Stachel debunks many of the old (and some new) myths about Einstein and offers novel insight into his life and work. Throughout the volume, a new, more human picture of Einstein is offered to replace the plaster saint of popular legend. In particular, a youthful Einstein emerges from the obscurity that previously shrouded his early years, and much new light is shed on the origins of the special and general theories of relativity. Also discussed in some detail are Einstein's troubled relationship with his first wife, his friendships with other physicists such as Eddington, Bose, and Pauli, and his Jewish identity. The essays are grouped thematically into the following areas: * The Human Side * Editing the Einstein Papers * Surveys of Einstein's Work * Special Relativity * General Relativity * Quantum Theory * Einstein and Other Scientists * Book Reviews Because the essays are independent of one another, readers will be able to dip into this collection to satisfy varying interests. It will be of particular interest to historians of 20th century science, working physicists, and students, as well as to the many members of the general reading public who continue to be fascinated by aspects of Einstein's life and work.
This volume has its origin in the Seventeenth International Workshop on Maximum Entropy and Bayesian Methods, MAXENT 97. The workshop was held at Boise State University in Boise, Idaho, on August 4 -8, 1997. As in the past, the purpose of the workshop was to bring together researchers in different fields to present papers on applications of Bayesian methods (these include maximum entropy) in science, engineering, medicine, economics, and many other disciplines. Thanks to significant theoretical advances and the personal computer, much progress has been made since our first Workshop in 1981. As indicated by several papers in these proceedings, the subject has matured to a stage in which computational algorithms are the objects of interest, the thrust being on feasibility, efficiency and innovation. Though applications are proliferating at a staggering rate, some in areas that hardly existed a decade ago, it is pleasing that due attention is still being paid to foundations of the subject. The following list of descriptors, applicable to papers in this volume, gives a sense of its contents: deconvolution, inverse problems, instrument (point-spread) function, model comparison, multi sensor data fusion, image processing, tomography, reconstruction, deformable models, pattern recognition, classification and group analysis, segmentation/edge detection, brain shape, marginalization, algorithms, complexity, Ockham's razor as an inference tool, foundations of probability theory, symmetry, history of probability theory and computability. MAXENT 97 and these proceedings could not have been brought to final form without the support and help of a number of people.
This continuing authoritative series deals with the chemistry, materials science, physics and technology of the rare earth elements in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The work offers the researcher and graduate student a complete and thorough coverage of this fascinating field. Authoritative
This book is intended to provide a bridge from courses in general physics to the intermediate -level courses in classical mechanics, electrodynamics and quantum mechanics. It begins with a short review of some topics in physics that are then used throughout the book to provide the physical contexts for the mathematical methods that are developed: electrostatics, electric currents, magnetic flux, simple harmonic motion, and the rigid rotor. The next chapters treat vector algebra and vector calculus; the concept of magnetic flux serves to give physical meaning to the integral theorems. A short chapter on complex numbers provides the needed background for the remainder of the text. Ordinary differential equations arise in may physical contexts; the simple harmonic oscillator serves as the illustrative example. Examples from both classical and quantum physics illustrate the chapters on partial differential equations and eigenvalue problems: the quantum harmonic oscillator and a particle in a box, a conducting sphere in a uniform field and a vibrating drum head. The eigenvalue problem leads naturally to a discussion of orthogonal functions, which again use the quantum harmonic oscillator to provide the physical insight, and to matrices, where coupled oscillators and the principal axes of a rotating rigid body provide the physical context. The text concludes with a brief discussion of variational methods and the Euler-Lagrange equation. Problems at the end of each chapter give the student experience in applying mathematical methods to the solution of physical problems. Illustrative exercises throughout provide guidance. Many of the exercises call for graphical representations, and some are particularly amenable to the use of numerical methods.
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Special numerical techniques are already needed to deal with nxn matrices for large n.Tensor data are of size nxnx...xn=n DEGREESd, where n DEGREESd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. The monograph describes the methods how tensors can be practically treated and how numerical operations can be performed. Applications are problems from quantum chemistry, approximation of multivariate functions, solution of pde, e.g., with stochastic coefficie
Physics is the science that studies how our universe behaves: from the tiny subatomic world of particle physics to the cosmos of astrophysics and so much more in between.Mind Maps: Physics helps the reader to understand the importance of physics and to learn its language by exploring ten mind maps, which are powerful tools for visual learning and understanding. Complex ideas are explained using text and illustrations that are easy to follow. Featuring specially commissioned, hand-drawn maps, diagrams and doodles, together with an expert analysis of concepts, this book provides a wealth of visual information to explore and discover.
The book presents current research progress on hydrogen storage alloys, with a special focus on their applications in batteries. Background, formation mechanisms, electrochemical characteristics, and effects of elemental substitution are covered. Provides an up-to-date overview of the theme for experienced researchers, while including enough fundamentals to serve as a handy, practical introduction for newcomers to the field.
In June 1954, the Atomic Energy Commission determined that J. Robert Oppenheimer, wartime director of the Manhattan Project and Father of the Atomic Bomb, was a security risk. Consequently, America's most prominent scientist was removed from government service. In contrast to historical and political explanations of the Oppenheimer case, Holloway explores the role that rhetoric played in Oppenheimer's demise. In doing so, the author draws attention to the symbolic nature of politics and character and highlights the significant interaction of political and scientific terminologies in American discourse. Holloway's analysis and evaluation suggest that the accusations against Oppenheimer used the most powerful terms of the mid-1950s--communism, progress, and science--to legitimize the government's questionable action. Oppenheimer, for his part, failed to use his most strategic rhetorical resources in his defense, and therefore participated in his own ruin. Holloway highlights the rhetorical interaction among accusation, self-defense, and decision statements through a microscopic rhetorical analysis of the case's five central documents. An original extension and refinement of Kenneth Burke's cluster-agon method, which Holloway calls terminological algebra, is proposed as a systematic analytical tool consistent with Burke's theories. Recommended for critics of rhetoric and political communication.
This book offers a general approach to pulse width modulation techniques and multilevel inverter topologies. The multilevel inverters can be approximately compared to a sinusoidal waveform because of their increased number of direct current voltage levels, which provides an opportunity to eliminate harmonic contents and therefore allows the utilization of smaller and more reliable components. On the other side, multilevel inverters require more components than traditional inverters and that increases the overall cost of the system. The various algorithms for multilevel neutral point clamped inverter fed induction motor are proposed and implemented, and the results are analyzed. The performance of these algorithms is evaluated in terms of inverter output voltage, current waveforms and total harmonic distortion. Various basic pulse width modulation techniques, features and implementation of space vector pulse width modulation for a two-level inverter, and various multilevel inverter topologies are discussed in detail. This book is extremely useful for undergraduate students, postgraduate students, industry people, scientists of research laboratories and especially for the research scholars who are working in the area of multilevel inverters. Dr. Satish Kumar Peddapelli is Assistant Professor at the Osmania University in Hyderabad, India. His areas of interest are Power Electronics, Drives, Power Converters, Multi Level Inverters and Special Machines.
Ernst Mach -- A Deeper Look has been written to reveal to English-speaking readers the recent revival of interest in Ernst Mach in Europe and Japan. The book is a storehouse of new information on Mach as a philosopher, historian, scientist and person, containing a number of biographical and philosophical manuscripts publihsed for the first time, along with correspondence and other matters published for the first time in English. The book also provides English translations of Mach's controversies with leading physicists and psychologists, such as Max Planck and Carl Stumpf, and offers basic evidence for resolving Mach's position on atomism and Einstein's theory of relativity. Mach's scientific, philosophical and personal influence in a number of countries -- Austria, Germany, Bohemia and Yugoslavia among them -- has been carefully explored and many aspects detailed for the first time. All of the articles are eminently readable, especially those written by Mach's sister. They are deeply researched, new interpretations abound, and the bibliography includes recent works by and about Mach from over a dozen countries. The book also contains many articles by or about Mach's contemporaries, including Ostwald, Dingler, Weichert and, especially, Einstein. Finally, and most intriguingly, the original ideas of Japanese scholars are presented, built on Mach's philosophy. These demonstrate how Mach's world view is currently contributing to the solution of contemporary philosophical problems.
This book is on soliton solutions of elliptical partial differential equations arising in quantum field theory, such as vortices, instantons, monopoles, dyons, and cosmic strings. The book presents in-depth description of the problems of current interest, forging a link between mathematical analysis and physics and seeking to stimulate further research in the area. Physically, it touches the major branches of field theory: classical mechanics, special relativity, Maxwell equations, superconductivity, Yang-Mills gauge theory, general relativity, and cosmology. Mathematically, it involves Riemannian geometry, Lie groups and Lie algebras, algebraic topology (characteristic classes and homotropy) and emphasizes modern nonlinear functional analysis. There are many interesting and challenging problems in the area of classical field theory, and while this area has long been of interest to algebraists, geometers, and topologists, it has gradually begun to attract the attention of more analysts. This book written for researchers and graduate students will appeal to high-energy and condensed-matter physicists, mathematicians, and mathematical scientists.
This book is the fourth in a series of lectures of the S eminaire Poincar e, whichis directed towards a large audience of physicists and of mathematicians. The goal of this seminar is to provide up-to-date information about general topics of great interest in physics. Both the theoretical and experimental aspects are covered, with some historical background. Inspired by the Bourbaki seminar in mathematics in its organization, hence nicknamed "Bourbaphi," the Poincar e Seminar is held twice a year at the Institut Henri Poincar e in Paris, with cont- butions prepared in advance. Particular care is devoted to the pedagogical nature of the presentations so as to ful?ll the goal of being readable by a large audience of scientists. This volume contains the seventh such Seminar, held in 2005. It is devoted to Einstein's 1905 papers and their legacy. After a presentation of Einstein's ep- temological approach to physics, and the genesis of special relativity, a cen- nary perspective is o?ered. The geometry of relativistic spacetime is explained in detail. Single photon experiments are presented, as a spectacular realization of Einstein's light quanta hypothesis. A previously unpublished lecture by Einstein, which presents an illuminating point of view on statistical physics in 1910, at the dawn of quantum mechanics, is reproduced. The volume ends with an essay on the historical, physical and mathematical aspects of Brownian motion. We hopethatthe publicationofthis serieswill servethe community ofphy- cists and mathematicians at the graduate student or professional level."
This clear, concise Complete Revision & Practice book from CGP is a perfect way to prepare for the Edexcel A-Level Physics exams - it covers every topic from both years of the course. It's fully up-to-date for the new exam specifications for 2015 and beyond, with straightforward explanations, helpful examples and full-colour diagrams throughout. Practice questions and exam-style questions (with answers) are included for every topic, and the book is rounded off with a section of in-depth advice on Practical Skills. And finally, a free Online Edition of the whole book is included - just use the code printed inside the book to access it on your PC, Mac or tablet! |
![]() ![]() You may like...
Mathematics and Computer Science II…
Brigitte Chauvin, Philippe Flajolet, …
Hardcover
R3,201
Discovery Miles 32 010
Complex Networks VII - Proceedings of…
Hocine Cherifi, Bruno Goncalves, …
Hardcover
R5,087
Discovery Miles 50 870
An Invitation to Biomathematics
Raina Robeva, James R. Kirkwood, …
Paperback
|