![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > General
ZBIGNIEW OZIEWICZ University of Wroclaw, Poland December 1992 The First Max Born Symposium in Theoretical and Mathematical Phy sics, organized by the University of Wrodaw, was held in September 1991 with the intent that it would become an annual event. It is the outgrowth of the annual Seminars organized jointly since 1972 with the University of Leipzig. The name of the Symposia was proposed by Professor Jan Lopu szanski. Max Born, an outstanding German theoretical physicist, was born in 1883 in Breslau (the German name of Wrodaw) and educated here. The Second Max Born Symposium was held during the four days 24- 27 September 1992 in an old Sobotka Castle 30 km west of Wrodaw. The Sobotka Castle was built in the eleventh century. The dates engraved on the walls of the Castle are 1024, 1140, and at the last rebuilding, 1885. The castle served as a cloister until the end of the sixteenth century."
This volume, dedicated to Prof. Gabriele Veneziano on the occasion of his retirement from CERN, starts as a broad historico-scientific study on the work on string theory and nonperturbative QCD that has been pioneered by Prof. Veneziano in the late 60s and early 70s. It goes on to examine the many ramifications this and similar early work has spawned over the past decades and the reader will find state-of-the art tutorial reviews on string cosmology, string dualities and symmetries, and much more. The book includes a concise updated scientific biography of, and an interview with, Prof. Veneziano, in which he relates his personal views about the present and future of fundamental physics. This is followed by the commented draft of an unpublished paper of 1973 of his, anticipating interesting results which were rediscovered and published more than a decade later. Overall, this volume is a vast and unique canvas where the re-examination of older and the presentation of newer results and insights are skillfully mixed with personal recollections of the contributing authors, most of them involved in the early days of string and quantum field theory, about Prof. Veneziano and the many interrelated topics considered.
(translation) I was interested by the development of a new edition of the book 1] "Die Grundstrukturen einer physikalischen Theorie." This has been possible, in spite of my old age, thanks to the contributions of Dr. G. Thurler. Without his indefatigable support and his essential and fundamental propositions, this new edition would not have been possible. The new edition clari?es and formulates more precisely the fundamental ideasofphysicaltheoriesinordertoavoidasmuchaspossibleanyambiguities. One begins theoretical physics with concepts that can be explained wi- out theories. Later, one introduces other concepts by theories known as "pre-theories." Thus it does not make sense to introduce concepts such as "state" without a pre-theory. The ?eld of physics is thus determined by the basic concepts introduced without the use of pre-theories. Also, it does not make sense to speak about the position and speed of an electron at a ?xed time. "Reality" is not however only the reality which is described by physical concepts. Thus, for example, colors, tones, joy, hate, and love are not physical concepts. But the demarcation of the physical concepts, and thus the demarcation of the ?eld of physics makes it possible to know more clearly, and thus to describemoreclearlyinthe future, the structureof realitybeyondthe domain ofphysics.The?eldoflifeandnotthatofdeathshouldbethegoalofmankind. Thus, I hope that this book can also become another small step for life.
'A quite delightful book on the joys, and universality, of physics. Czerski's enthusiasm is infectious because she brings our humdrum everyday world to life, showing us that it is just as fascinating as anything that can be seen by the Hubble Telescope or created at the Large Hadron Collider.' - Jim Al-Khalili Our world is full of patterns. If you pour milk into your tea and give it a stir, you'll see a swirl, a spiral of two fluids, before the two liquids mix completely. The same pattern is found elsewhere too. Look down on the Earth from space, and you'll find similar swirls in the clouds, made where warm air and cold air waltz. In Storm in a Teacup, Helen Czerski links the little things we see every day with the big world we live in. Each chapter begins with something small - popcorn, coffee stains and refrigerator magnets - and uses it to explain some of the most important science and technology of our time. This is physics as the toolbox of science - a toolbox we need in order to make sense of what is around us and arrive at decisions about the future, from medical advances to solving our future energy needs. It is also physics as the toy box of science: physics as fun, as never before.
Carl Friedrich von Weizsackers Aufbau der Physik, first published in 1985, was intended as an overview of his lifelong concern: an understanding of the unity of physics. That is, the idea of a quantum theory of binary alternatives (the so-called ur-theory), a unified quantum theoretical framework in which spinorial symmetry groups are considered to give rise to the structure of space and time.The book saw numerous reprints, but it was published in German only.The present edition, in English, provides a newly arranged and revised version, in which some original chapters and sections have been deleted, and a new chapter about further insights and results of ur-theoretic research of the late 1980's and 1990's, mainly by the work of Thomas Gornitz, has been included, as well as a general introduction to Weizsacker's Philosophy of Physics."
Whitham Modulation Equations and their Exact Solutions: The Whitham Equation and Shocks in the Toda Lattice; Bloch, Kodama. Semiclassical Behavior in the NLS Equation; Bronski, McLaughlin. A Numerical Study of Nearly Integrable Modulation Equations; Forest, Sinha. The Quasiclassical Limit of the Inverse Scattering Method; Geogjaev. Asymptotics and Limits: Long-Time Asymptotics for the Autocorrelation Function of the Transverse Ising Chain at the Critical Magnetic Field; Deift, Zhou. Resonances in Multifrequency Averaging Theory; Dobrokhotov. Billiards Systems and the Transportation Equation; Golse. Existence and Regularity of Dispersive Waves: Geometric Phases and Monodromy at Singularities; Alber, Marsden. Nonlinear Waves and the 1:1:2 Resonance; Craig, Wayne. Defects of One Dimensional Vortex Lattices; Chernykh, et al. 15 additional articles. Index.
Physics: Imagination and Reality introduces the reader to major ideas and the conceptual structure of modern physics, by tracing its development from the introduction of fields into physics by Faraday and Maxwell in the last century. Because the approach is historical, the book provides a comprehensive overview of the subjects. It should appeal to anyone interested in a basic understanding of the contemporary physicists view of the physical world. It avoids all but the simplest mathematics and presents ideas and concepts in everyday language.Physics: Imagination and Reality attempts to provide educated citizens with an understanding of contemporary physics and, at the same time, shows that its ideas have a grandeur, a challenge to the imagination and an aesthetic appeal which merit its recognition as an integral part of our culture.
This two-volume set containts parts I and II. Each volume is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
For a meaningful understanding of physics, it is necessary to realise that this corpus of knowledge operates in a register different from natural thought. This book aims at situating the main trends of common reasoning in physics with respect to some essential aspects of accepted theory. It analyses a great many research results based on studies of pupils and students at various academic levels, involving a range of physical situations. It shows the impressive generality of the trends of common thought, as well as their resistance to teaching. The book's main focus is to underline to what extent natural thought is organised. As a result of this mapping out of trends of reasoning, some suggestions for teaching are presented; these have already influenced recent curricula in France. This book is intended for teachers and teacher trainers principally, but students can also benefit from it to improve their understanding of physics and of their own ways of reasoning.
This book is not only an autobiography of the respected physicist and director of the Stanford Linear Accelerator Center, but a discussion and analysis of issues critical to the relationship between independent academic inquiry and imposed government orthodoxy. The book describes each phase of Dr. Panofsky's career in a way that clarifies the nature of the issues surrounding his work, and explains his chosen course of action.
Many recent advances in modelling within the applied sciences and engineering have focused on the increasing importance of sensitivity analyses. For a given physical, financial or environmental model, increased emphasis is now placed on assessing the consequences of changes in model outputs that result from small changes or errors in both the hypotheses and parameters. The approach proposed in this book is entirely new and features two main characteristics. Even when extremely small, errors possess biases and variances. The methods presented here are able, thanks to a specific differential calculus, to provide information about the correlation between errors in different parameters of the model, as well as information about the biases introduced by non-linearity. The approach makes use of very powerful mathematical tools (Dirichlet forms), which allow one to deal with errors in infinite dimensional spaces, such as spaces of functions or stochastic processes. The method is therefore applicable to non-elementary models along the lines of those encountered in modern physics and finance. This text has been drawn from presentations of research done over the past ten years and that is still ongoing. The work was presented in conjunction with a course taught jointly at the Universities of Paris 1 and Paris 6. The book is intended for students, researchers and engineers with good knowledge in probability theory.
What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
Today it appears that we understand more about the universe than about our interconnected socio-economic world. In order to uncover organizational structures and novel features in these systems, we present the first comprehensive complex systems analysis of real-world ownership networks. This effort lies at the interface between the realms of economics and the emerging field loosely referred to as complexity science. The structure of global economic power is reflected in the network of ownership ties of companies and the analysis of such ownership networks has possible implications for market competition and financial stability. Thus this work presents powerful new tools for the study of economic and corporate networks that are only just beginning to attract the attention of scholars.
This volume of the Handbook illustrates the rich variety of topics covered by rare earth science. Three chapters are devoted to the description of solid state compounds: skutterudites (Chapter 211), rare earth -antimony systems (Chapter 212), and rare earth-manganese perovskites (Chapter 214). Two other reviews deal with solid state properties: one contribution includes information on existing thermodynamic data of lanthanide trihalides (Chapter 213) while the other one describes optical properties of rare earth compounds under pressure (Chapter 217). Finally, two chapters focus on solution chemistry. The state of the art in unraveling solution structure of lanthanide-containing coordination compounds by paramagnetic nuclear magnetic resonance is outlined in Chapter 215. The potential of time-resolved, laser-induced emission spectroscopy for the analysis of lanthanide and actinide solutions is presented and critically discussed in Chapter 216.
These two volumes constitute the Proceedings of the ConfA(c)rence MoshA(c) Flato, 1999'. Their spectrum is wide but the various areas covered are, in fact, strongly interwoven by a common denominator, the unique personality and creativity of the scientist in whose honor the Conference was held, and the far-reaching vision that underlies his scientific activity. With these two volumes, the reader will be able to take stock of the present state of the art in a number of subjects at the frontier of current research in mathematics, mathematical physics, and physics. Volume I is prefaced by reminiscences of and tributes to Flato's life and work. It also includes a section on the applications of sciences to insurance and finance, an area which was of interest to Flato before it became fashionable. The bulk of both volumes is on physical mathematics, where the reader will find these ingredients in various combinations, fundamental mathematical developments based on them, and challenging interpretations of physical phenomena. Audience: These volumes will be of interest to researchers and graduate students in a variety of domains, ranging from abstract mathematics to theoretical physics and other applications. Some parts will be accessible to proficient undergraduate students, and even to persons with a minimum of scientific knowledge but enough curiosity.
Physics: Imagination and Reality introduces the reader to major ideas and the conceptual structure of modern physics, by tracing its development from the introduction of fields into physics by Faraday and Maxwell in the last century. Because the approach is historical, the book provides a comprehensive overview of the subjects. It should appeal to anyone interested in a basic understanding of the contemporary physicists view of the physical world. It avoids all but the simplest mathematics and presents ideas and concepts in everyday language.Physics: Imagination and Reality attempts to provide educated citizens with an understanding of contemporary physics and, at the same time, shows that its ideas have a grandeur, a challenge to the imagination and an aesthetic appeal which merit its recognition as an integral part of our culture.
This highly unusual book is a serious inquiry into Schrodinger's question, "What is life?", and at the same time a celebration of life itself. It takes the reader on a voyage of discovery through many areas of contemporary physics, from non-equilibrium thermodynamics and quantum optics to liquid crystals and fractals, all necessary for illuminating the problem of life. In the process, the reader is treated to a rare and exquisite view of the organism, gaining novel insights, not only into the physics but also into "the poetry and meaning of being alive". This book is intended for all who love the subject.
The Earth s magnetic and gravity field play an important role in global and regional geodynamics. Satellite exploration of these fields has received great attention in recent years. Research satellites such as CHAMP and GRACE as well as the ESA explorer GOCE apply new measurement techniques, thus allowing the recovery of the gravitational and magnetic field with unprecedented accuracy and resolution, spatial as well as temporal. Combined with terrestrial observations and computer models, this data will help develop a more detailed understanding of the Earth as a system. In Germany, many of the processing, modelling and interpreting methodologies for these new observation techniques are developed under the umbrella of the R&D-programme GEOTECHNOLOGIEN, funded by the Federal Ministry of Education and Research (BMBF). The research projects focus on a better understanding of the spatial and temporal variations in the magnetic and gravity field and their relationship to the dynamics of the Earth s interior and global change processes. This volume presents the results of the multidisciplinary studies covered by the programme for the period 2005-2008. It includes the following topics: High-accuracy gravity field models, near-real-time provision and usage of CHAMP and GRACE atmospheric sounding, sea level variations, improved GRACE gravity time series and their validation by ocean bottom pressure measurements, integration of space geodetic techniques as a basis for the Global Geodetic-Geophysical Observing System (GGOS), high-resolution magnetic field models and global magnetisation maps and time-variable gravity and surface mass processes."
The NATO Advanced Research Workshop "Painleve Transcendents, their Asymp totics and Physical Applications," held at the Alpine Inn in Sainte-Adele, near Montreal, September 2 -7, 1990, brought together a group of experts to discuss the topic and produce this volume. There were 41 participants from 14 countries and 27 lectures were presented, all included in this volume. The speakers presented reviews of topics to which they themselves have made important contributions and also re sults of new original research. The result is a volume which, though multiauthored, has the character of a monograph on a single topic. This is the theory of nonlinear ordinary differential equations, the solutions of which have no movable singularities, other than poles, and the extension of this theory to partial differential equations. For short we shall call such systems "equations with the Painleve property." The search for such equations was a very topical mathematical problem in the 19th century. Early work concentrated on first order differential equations. One of Painleve's important contributions in this field was to develop simple methods applicable to higher order equations. In particular these methods made possible a complete analysis of the equation;; = f(y', y, x), where f is a rational function of y' and y, with coefficients that are analytic in x. The fundamental result due to Painleve (Acta Math."
Originally published in 1979. This reprints the revised and expanded edition of 1996. In this volume, physicists, biologists and chemists, who have been involved in some of the most exciting discoveries in modern scientific thought explore issues which have shaped modern physics and which hint at what may form the next scientific revolution. The major issues discussed are the understanding of time and space, quantum and relativity theories and recent attempts to unite them and related questions in theoretical biology.
Written as a set of tutorial reviews on both experimental facts and theoretical modelling, this volume is intended as an introduction and modern reference in the field for graduate students and researchers in biophysics, biochemistry and applied mathematics. |
![]() ![]() You may like...
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
![]()
|