![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > General
This book presents improved numerical techniques and applied computer-aided simulations as a part of emerging trends in mechatronics in all areas related to complex fluids, with particular focus on using a combination of modeling, theory, and simulation to study systems that are complex due to the rheology of fluids (i.e., ceramic pastes, polymer solutions and melts, colloidal suspensions, emulsions, foams, micro-/nanofluids, etc.) and multiphysics phenomena in which the interactions of various effects (thermal, chemical, electric, magnetic, or mechanical) lead to complex dynamics. The areas of applications span materials processing, manufacturing, and biology.
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.
The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. * A new edition of the premier philosophical study of Bell s Theorem and its implication for the relativistic account of space and time * Discusses Roderich Tumiulka s explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell s inequality. * Discusses the "Free Will Theorem" of John Conway and Simon Kochen * Introduces philosophers to the relevant physics and demonstrates how philosophical analysis can help inform physics
This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics--once thought to be a paradigm instance of unproblematic theory reduction--is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
The runaway success of the microchip processor may be nearing its end,
with profound implications for our economy, society and way of life,
even leaving Silicon Valley as a new Rust Belt, its technology
obsolete. Step forward the quantum computer, which harnesses the power
and complexity of the atomic realm, and may be useful in solving
humanity's greatest challenges from climate change, to global
starvation, to incurable diseases. Humanity's next great technological
achievement already promises to be every bit as revolutionary as the
transistor and microchip once were. Its unprecedented gains in
computing power and unique ability to simulate the physical universe
herald advances that could change every aspect of our lives.
Integrated Science is a straightforward, easy-to-read, but substantial introduction to the fundamental behavior of matter and energy in living and nonliving systems. It is intended to serve the needs of non-science majors who must complete one or more science courses as part of a general or basic studies requirement. Integrated Science provides an introduction to a scientific way of thinking as it introduces fundamental scientific concepts, often in historical context. Several features of the text provide opportunities for students to experience the methods of science by evaluating situations from a scientific point of view. While technical language and mathematics are important in developing an understanding of science, only the language and mathematics needed to develop central concepts are used. No prior work in science is assumed.
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
Together with "Theory of Operator Algebras I, II" (EMS 124 and 125), this book, written by one of the most prominent researchers in the field of operator algebras, presents the theory of von Neumann algebras and non-commutative integration focusing on the group of automorphisms and the structure analysis. It is is part of the recently developed part of the "Encyclopaedia of Mathematical Sciences" on operator algebras and non-commutative geometry (see http://www.springer.de/math/ems/index.html). The book provides essential and comprehensive information for graduate students and researchers in mathematics and mathematical physics.
These Study Guides have been developed exclusively with the Caribbean Examinations Council (CXC(r)) to be used as an additional resource by candidates who are following the Caribbean Secondary Education Certificate (CSEC(r)) programme. They provide candidates with extra support to help them maximise their performance in their examinations.
Microdisplays are tiny, high-resolution electronic displays, designed for use in magnifying optical systems such as HDTV projectors and near-eye personal viewers. As a result of research and development into this field, Microdisplays are incorporated in a variety of visual electronics, notably new 3G portable communications devices, digital camera technologies, wireless internet applications, portable DVD viewers and wearable PCs. "Introduction to Microdisplays" encapsulates this market through describing in detail the theory, structure, fabrication and applications of Microdisplays. In particular this book: Provides excellent reference material for the Microdisplay industry through including an overview of current applications alongside a guide to future developments in the field Covers all current technologies and devices such as Silicon Wafer Backplane Technology, Liquid Crystal Devices, Micromechanical Devices, and the emerging area of Organic Light Emitting Diodes Presents guidance on the design of applications of Microdisplays, including Microdisplays for defence and telecoms, from basic principles through to their performance limitations "Introduction to Microdisplays" is a thorough and comprehensive reference on this emerging topic. It is essential reading for display technology manufacturers, developers, and system integrators, as well as practising electrical engineers, physicists, chemists and specialists in the display field. Graduate students, researchers, and developers working in optics, material science, and telecommunications will also find this a valuable resource. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics
The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume.This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws, related analysisand applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier Stokes Fourier Poisson system, in addition to new results on collective phenomena described by the Cucker Smale model. The present volume is addressed toresearchers and graduate students interested in partial differential equations and related analysis with applications.
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications.
This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schroedinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students.
Volume 4 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
This proceedings book presents state-of-the-art developments in theory, methodology, and applications of network analysis across sociology, computational science, education research, literature studies, political science, international relations, social media research, and urban studies. The papers comprising this collection were presented at the Fifth 'Networks in the Global World' conference organized by the Centre for German and European Studies of St. Petersburg University and Bielefeld University and held on July 7-9, 2020. This biannual conference series revolves around key interdisciplinary issues in the focus of network analysts, such as the multidimensional approach to social reality, translation of theories and methods across disciplines, and mixing of data and methods. The distinctive features of this book are the emphasis on in-depth linkages between theory, method, and applications, the blend of qualitative and quantitative methods, and the joint consideration of different network levels, types, and contexts. The topics covered by the papers include interrelation of social and cultural structures, constellations of power, and patterns of interaction in areas ranging from various types of communities (local, international, educational, political, and so on) to social media and literature. The book is useful for practicing researchers, graduate and postgraduate students, and educators interested in network analysis of social relations, politics, economy, and culture. Features that set the book apart from others in the field: * The book offers a unique cross-disciplinary blend of computational and ethnographic network analyses applied to a diverse spectrum of spheres, from literature and education to urban planning and policymaking. * Embracing conceptual, methodological, and empirical works, the book is among the few in network analysis to emphasize connections between theory, method, and applications. * The book brings together authors and empirical contexts from all over the globe, with a particular emphasis on European societies.
This book explores the impact of nonlinearity on a broad range of areas, including time-honored fields such as biology, geometry, and topology, but also modern ones such as quantum mechanics, networks, metamaterials and artificial intelligence. The concept of nonlinearity is a universal feature in mathematics, physics, chemistry and biology, and is used to characterize systems whose behavior does not amount to a superposition of simple building blocks, but rather features complex and often chaotic patterns and phenomena. Each chapter of the book features a synopsis that not only recaps the recent progress in each field but also charts the challenges that lie ahead. This interdisciplinary book presents contributions from a diverse group of experts from various fields to provide an overview of each field's past, present and future. It will appeal to both beginners and seasoned researchers in nonlinear science, numerous areas of physics (optics, quantum physics, biophysics), and applied mathematics (ODEs, PDEs, dynamical systems, machine learning) as well as engineering.
Computation and its Limits is an innovative cross-disciplinary investigation of the relationship between computing and physical reality. It begins by exploring the mystery of why mathematics is so effective in science and seeks to explain this in terms of the modelling of one part of physical reality by another. Going from the origins of counting to the most blue-skies proposals for novel methods of computation, the authors investigate the extent to which the laws of nature and of logic constrain what we can compute. In the process they examine formal computability, the thermodynamics of computation and the promise of quantum computing.
This book uses new mathematical tools to examine broad computability and complexity questions in enumerative combinatorics, with applications to other areas of mathematics, theoretical computer science, and physics. A focus on effective algorithms leads to the development of computer algebra software of use to researchers in these domains. After a survey of current results and open problems on decidability in enumerative combinatorics, the text shows how the cutting edge of this research is the new domain of Analytic Combinatorics in Several Variables (ACSV). The remaining chapters of the text alternate between a pedagogical development of the theory, applications (including the resolution by this author of conjectures in lattice path enumeration which resisted several other approaches), and the development of algorithms. The final chapters in the text show, through examples and general theory, how results from stratified Morse theory can help refine some of these computability questions. Complementing the written presentation are over 50 worksheets for the SageMath and Maple computer algebra systems working through examples in the text.
This book presents a biography of Abdus Salam, the first Muslim to win a Nobel Prize for Science (Physics 1979), who was nevertheless excommunicated and branded as a heretic in his own country. His achievements are often overlooked, even besmirched. Realizing that the whole world had to be his stage, he pioneered the International Centre for Theoretical Physics in Trieste, a vital focus of Third World science which remains as his monument. A staunch Muslim, he was ashamed of the decline of science in the heritage of Islam, and struggled doggedly to restore it to its former glory. Undermined by his excommunication, these valiant efforts were doomed.
This accessible textbook offers a novel, concept-led approach to superconducting electronics, using the COMSOL Multiphysics software to help describe fundamental principles in an intuitive manner. Based on a course taught by the author and aimed primarily at engineering students, the book explains concepts effectively and efficiently, uncovering the "shortcut" to understanding each topic, enabling readers to quickly grasp the underlying essence. The book is divided into two main parts; the first part provides a general introduction to key topics encountered in superconductivity, illustrated using COMSOL simulations based on time-dependent Ginzburg-Landau equations and avoiding any deeply mathematical derivations. It includes numerous worked examples and problem sets with tips and solutions. The second part of the book is more conventional in nature, providing detailed derivations of the basic equations from first principles. This part covers more advanced topics, including the BCS-Gor'kov-Eliashberg approach to equilibrium properties of superconductors, the derivation of kinetic equations for nonequilibrium superconductors, and the derivation of time-dependent Ginzburg-Landau equations, used as the basis for COMSOL modeling in the first part. Supported throughout by an extensive library of COMSOL Multiphysics animations, the book serves as a uniquely accessible introduction to the field for engineers and others with a less rigorous background in physics and mathematics. However, it also features more detailed mathematical background for those wishing to delve further into the subject.
This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates. |
You may like...
|