![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > General
Wolfgang Pauli, world-renowned physicist, turned to Carl Jung for help, setting a standing appointment for Mondays at noon. Thus bloomed an extraordinary intellectual conjunction. Eighty letters, written over twenty-six years, record that friendship, and are published here in English for the first time.Through the association of these two pioneering thinkers, developments in physics profoundly influenced the evolution of Jungian psychology. And many of Jung's abiding themes shaped how Pauli - and, through him, other physicists - understood the physical world. Atom and Archetype will appeal not only to those interested in the life of Pauli or Jung, but also to the educated general reader.
The spectacular culinary creations of modern cuisine are the stuff of countless articles and Instagram feeds. But to a scientist they are also perfect pedagogical explorations into the basic scientific principles of cooking. In Science and Cooking, Harvard professors Michael Brenner, Pia Soerensen and David Weitz bring the classroom to your kitchen to teach the physics and chemistry underlying every recipe. Science and Cooking answers questions such as why we knead bread, what determines the temperature at which we cook a steak or the how much time our chocolate chip cookies should spend in the oven, through fascinating lessons ranging from the role of pressure and boiling points in pecan praline to that of microbes in your coffee. With beautiful full-colour illustrations and recipes, hands-on experiments, and engaging introductions from world-renowned chefs Ferran Adria and Jose Andres, Science and Cooking will change the way readers approach both subjects-in their kitchens and beyond.
Moire fringe techniques have expanded considerably over the past decade and are now established as important metrological tools. The main reason for this flourishing expansion is the use of the moire fringe method in the common availability of the laser light. This book covers the major theoretical aspects and applications of the moire technique. A concise description of the formation of moire fringes and their interpretation is presented. A comprehensive review of the most important applications of the moire phenomenon is given. Although some of them are still being refined there are already well established applications to moire displacement and alignment sensors, grating interferometry, moire processing of interferograms, moire topography and strain analysis. There is also a discussion on the influence of the types of superimposition on structures and of the type of illumination used on the intensity distribution in moire patterns.
Future energy technologies must embrace and achieve sustainability by displacing fossil carbon-intensive energy consumption or capture/reuse/sequester fossil carbon. This book provides a deeper knowledge on individual low (and zero) carbon technologies in a comprehensive way, covering details of recent developments on these technologies in different countries. It also covers materials and processes involved in energy generation, transmission, distribution, storage, policies, and so forth, including solar electrical; thermal systems; energy from biomass and biofuels; energy transmission, distribution, and storage; and buildings using energy-efficient lighting.
The Student's Study Guide summarizes the essential information in each chapter and provides additional problems for the student to solve, reinforcing the text's emphasis on problem-solving strategies and student misconceptions. Student's Study Guide for University Physics with Modern Physics, Volume 1 (Chapters 1-20)
This volume contains the proceedings of the conference Logical Foundations of Mathematics, Computer Science, and Physics-Kurt Godel's Legacy, held in Brno, Czech Republic on the 90th anniversary of his birth. The wide and continuing importance of Godel s work in the logical foundations of mathematics, computer science, and physics is confirmed by the broad range of speakers who participated in making this gathering a scientific event.
The present book carefully studies the blow-up phenomenon of solutions to partial differential equations, including many equations of mathematical physics. The included material is based on lectures read by the authors at the Lomonosov Moscow State University, and the book is addressed to a wide range of researchers and graduate students working in nonlinear partial differential equations, nonlinear functional analysis, and mathematical physics. Contents Nonlinear capacity method of S. I. Pokhozhaev Method of self-similar solutions of V. A. Galaktionov Method of test functions in combination with method of nonlinear capacity Energy method of H. A. Levine Energy method of G. Todorova Energy method of S. I. Pokhozhaev Energy method of V. K. Kalantarov and O. A. Ladyzhenskaya Energy method of M. O. Korpusov and A. G. Sveshnikov Nonlinear Schroedinger equation Variational method of L. E. Payne and D. H. Sattinger Breaking of solutions of wave equations Auxiliary and additional results
Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.
Application of the concepts and methods of topology and geometry have led to a deeper understanding of many crucial aspects in condensed matter physics, cosmology, gravity and particle physics. This book can be considered an advanced textbook on modern applications and recent developments in these fields of physical research. Written as a set of largely self-contained extensive lectures, the book gives an introduction to topological concepts in gauge theories, BRST quantization, chiral anomalies, sypersymmetric solitons and noncommutative geometry. It will be of benefit to postgraduate students, educating newcomers to the field and lecturers looking for advanced material.
Flying safely in aircraft implies the use of navigation instruments. Among them, the magnetic compass is still a first choice for orientation and it is compulsory in all aircraft. In our increasingly sophisticated but fragile world of global navigation systems and gyroscopic sensors, the compass is especially useful as a back-up: it has high reliability and is likely to survive in harsh electromagnetic aggressions or when all power supplies have failed. This book examines in detail how the science of geomagnetism is able to promote a correct use of the magnetic compass for navigation. A selected group of specialists met in Ohrid, Macedonia to expose their approaches to the question. Using techniques from Geology, Instrument science, Magnetism, Chaos theory and Potential Fields applied to the Balkan region and surroundings, they put together a roadmap to fully tackle the issue of measurement, analysis, mapping and forecasting of the magnetic declination in support of aeronautical safety.
This book offers the first comprehensive account of the new method of density matrix renormalization. Recent years have seen enormous progress in the numerical treatment of low-dimensional quantum sytems. With this new technique, which selects a reduced set of basis states via density matrices, it has become possible to treat large systems with amazing accuracy. The method has been applied successfully to a variety of important one-dimensional problems such as spin chains, Kondo models, and correlated electron systems. Extensions to other systems and higher dimensions are currently being developed. The contributions to this book are written by leading experts in the field. The two parts contain an introduction to the subject and a review of physical applications. As a combination of advanced textbook and guide to current research the book should become a standard source for everyone interested in the topic.
This proceedings volume is based on papers presented at the First Annual Workshop on Inverse Problems which was held in June 2011 at the Department of Mathematics, Chalmers University of Technology. The purpose of the workshop was to present new analytical developments and numerical methods for solutions of inverse problems. State-of-the-art and future challenges in solving inverse problems for a broad range of applications was also discussed. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.
The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunov s first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in the strongly nonlinear case, where the existence of such solutions can t be inferred on the basis of the first approximation alone. The book is illustrated with a large number of concrete examples of systems in which the presence of a particular solution of a certain class is related to special properties of the system s dynamic behavior. It is a book for students and specialists who work with dynamical systems in the fields of mechanics, mathematics, and theoretical physics.
This book captures one teacher's journey through the first three years of teaching science and mathematics in a large urban district in the US. The authors focus on Ian's agency as a beginning teacher and explore his success in working with diverse students. Using critical ethnography combined with first-person narrative, they investigate Ian's teaching practices in four contexts: his student teaching experience, his work with students on a summer curriculum development project, his first year of teaching in a small, urban high school, and his second year of teaching in a large, comprehensive high school. In each field, the authors describe the structural changes Ian encounters and the ways in which he re-utilizes the practices he used successfully in previous fields. Specific practices that helped foster community and led to the increased agency of his students as learners are highlighted. |
You may like...
The System Designer's Guide to VHDL-AMS…
Peter J Ashenden, Gregory D. Peterson, …
Paperback
R2,281
Discovery Miles 22 810
Topics in Parallel and Distributed…
Sushil K. Prasad, Anshul Gupta, …
Paperback
R1,487
Discovery Miles 14 870
Embedded Computing for High Performance…
Joao Manuel Paiva Cardoso, Jose Gabriel de Figueired Coutinho, …
Paperback
Smart Systems Integration and Simulation
Nicola Bombieri, Massimo Poncino, …
Hardcover
R3,341
Discovery Miles 33 410
Origins and Foundations of Computing…
Heinz Nixdorf Museums Forum
Hardcover
Introduction to Hardware Security and…
Mohammad Tehranipoor, Cliff Wang
Hardcover
R4,303
Discovery Miles 43 030
|