![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > General
"It's About Time" presents an introduction to theoretical physics as well as challenges to some of the concepts put forward by theoretical physicists of our time. These scientists have presented such concepts in countless public lectures, highlights of which are compiled here along with a variety of historical data, such as the history of earth time. Also included are short biographies of physicists who have contributed significantly to our knowledge base. To help foster understanding of the related astronomical matters, "It's About Time" includes technical information relating to Newton and Kepler's laws. Technical discussions are appended to the end of each relevant chapter. Furthermore, it offers a credible and significant challenge to Einstein's theories and to the current thinking on time dilation. Finally, the study outlines some procedural guidelines for young physicists and suggests how academic institutions can become custodians of a central depository of reference data, facilitating future physicists into more efficient and fruitful endeavors. This study offers no challenge to mathematics, which is a pure and exact science. When a physicist is able to have the mathematics represent natural phenomena, then mathematics becomes a necessary tool for our simplified understanding of nature. Eventually all of nature will be reduced to mathematical terms. The challenge presented here is to theoretical mathematics with no proven relationship to natural phenomena.
Check your AQA A-Level Physics knowledge with these unbeatable CGP Revision Question Cards! There are 127 cards in the pack, covering all the core content and options 9-12. Each one starts off with quick questions to warm you up, followed by harder questions to get your brain into top gear. Flip the card over and you'll find full answers to each question, carefully written to help you understand everything you need to know. Along the way, we've packed in plenty of diagrams and expert revision tips, and there are even questions on Practical Skills. Amazing! Matching study notes for the whole course are available in our AQA A-Level Physics Complete Revision & Practice guide (9781789080322).
Intended for advanced undergraduates and graduate students, this book is a practical guide to the use of probability and statistics in experimental physics. The emphasis is on applications and understanding, on theorems and techniques actually used in research. The text is not a comprehensive text in probability and statistics; proofs are sometimes omitted if they do not contribute to intuition in understanding the theorem. The problems, some with worked solutions, introduce the student to the use of computers; occasional reference is made to routines available in the CERN library, but other systems, such as Maple, can also be used. Topics covered include: basic concepts; definitions; some simple results independent of specific distributions; discrete distributions; the normal and other continuous distributions; generating and characteristic functions; the Monte Carlo method and computer simulations; multi-dimensional distributions; the central limit theorem; inverse probability and confidence belts; estimation methods; curve fitting and likelihood ratios; interpolating functions; fitting data with constraints; robust estimation methods. This second edition introduces a new method for dealing with small samples, such as may arise in search experiments, when the data are of low probability. It also includes a new chapter on queuing problems (including a simple, but useful buffer length example). In addition new sections discuss over- and under-coverage using confidence belts, the extended maximum-likelihood method, the use of confidence belts for discrete distributions, estimation of correlation coefficients, and the effective variance method for fitting y = f(x) when both x and y have measurement errors. A complete Solutions Manual is available.
Developments in mathematical physics during the second half of the 20th century influenced a number of mathematical areas, among the more significant being representation theory, differential equations, combinatorics, and algebraic geometry. In all of them, the dynamic role of integrable models has been central, largely due to two essential properties: the fact that integrable models possess infinite degrees of freedom and infinite dimensional symmetries. This volume focuses on the ongoing importance of integrability in covering the following topics: conformal field theory, massive quantum field theory, solvable lattice models, quantum affine algebras, the Painleve equations and combinatorics. Contributors: H. Au-Yang, R.J. Baxter, H.E. Boos, E. Date, K. Fabricius, V.A. Fateev, B. Feigin, G.Hatayama, A. Its, M. Jimbo, A. Kapaev, A.N. Kirillov, V.E. Korepin, A.Kuniba, J.M. Maillet, B.M. McCoy, C. Mercat, T. Miwa, A. Nakayashiki, M.Okado, C.H.Otto Chui, P.A. Pearce, J.H.H. Perk, V. Petkova, A. Schilling, F.A. Smirnov, T.Takagi, Y. Takeyama, M. Taneda, C.A. Tracy, Z.Tsuboi, H. Widom, J.-B. Zuber 'MathPhys "Odyssey 2001" will serve as an excellent reference text for mathematical physicists and graduate students in a number of areas."
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems.
This textbook presents the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. It presents the author's original method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameters is considered. In this second edition of the book, the number of approximate solving procedures for strong nonlinear oscillators is enlarged and a variety of procedures for solving free strong nonlinear oscillators is suggested. A method for error estimation is also given which is suitable to compare the exact and approximate solutions. Besides the oscillators with one degree-of-freedom, the one and two mass oscillatory systems with two-degrees-of-freedom and continuous oscillators are considered. The chaos and chaos suppression in ideal and non-ideal mechanical systems is explained. In this second edition more attention is given to the application of the suggested methodologies and obtained results to some practical problems in physics, mechanics, electronics and biomechanics. Thus, for the oscillator with two degrees-of-freedom, a generalization of the solving procedure is performed. Based on the obtained results, vibrations of the vocal cord are analyzed. In the book the vibration of the axially purely nonlinear rod as a continuous system is investigated. The developed solving procedure and the solutions are applied to discuss the muscle vibration. Vibrations of an optomechanical system are analyzed using the oscillations of an oscillator with odd or even quadratic nonlinearities. The extension of the forced vibrations of the system is realized by introducing the Ateb periodic excitation force which is the series of a trigonometric function. The book is self-consistent and suitable for researchers and as a textbook for students and also professionals and engineers who apply these techniques to the field of nonlinear oscillations.
In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.
The Completeness of Scientific Theories deals with the role of theories in measurement. Theories are employed in measurements in order to account for the operation of the instruments and to correct the raw data obtained. These observation theories thus guarantee the reliability of measurement procedures. In special cases a theory can be used as its own observation theory. In such cases it is possible, relying on the theory itself, to analyze the measuring procedures associated with theoretical states specified within its framework. This feature is called completeness. The book addresses the assets and liabilities of theories exhibiting this feature. Chief among the prima-facie liabilities is a testability problem. If a theory that is supposed to explain certain measurement results at the same time provides the theoretical means necessary for obtaining these results, the threat of circularity arises. Closer investigation reveals that various circularity problems do indeed emerge in complete theories, but that these problems can generally be solved. Some methods for testing and confirming theories are developed and discussed. The particulars of complete theories are addressed using a variety of theories from the physical sciences and psychology as examples. The example developed in greatest detail is general relativity theory, which exhibits an outstanding degree of completeness. In this context a new approach to the issue of the conventionality of physical geometry is pursued. The book contains the first systematic analysis of completeness; it thus opens up new paths of research. For philosophers of science working on problems of confirmation, theory-ladenness of evidence, empiricaltestability, and space--time philosophy (or students in these areas).
Many problems in mathematical physics rely heavily on the use of elliptical partial differential equations, and boundary integral methods play a significant role in solving these equations."Stationary Oscillations of Elastic Plates"" "studies the latter in the context ofstationaryvibrations of thin elastic plates. The techniquespresented herereduce the complexity of classical elasticity to a system of two independent variables, modeling problemsof flexural-vibrational elastic body deformation with the aid of eigenfrequencies and simplifying them to manageable, uniquely solvable integral equations. The book isintended foran audiencewith a knowledge of advanced calculus and some familiarity with functional analysis. It is a valuable resource for professionals in pure and applied mathematics, and for theoretical physicists and mechanical engineerswhose work involveselastic plates. Graduate students in these fieldscan also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations."
We live in complicated, dangerous times. They are also hyper-technical times. As citizens who will elect future presidents of the most powerful and influential country in the world, we need to know truly understand, not just rely on television's talking heads if Iran's nascent nuclear capability is a genuine threat to the West, if biochemical weapons are likely to be developed by terrorists, if there are viable alternatives to fossil fuels that should be nurtured and supported by the government, if nuclear power should be encouraged, and if global warming is actually happening. This book is written in everyday, nontechnical language on the science behind the concerns that our nation faces in the immediate future. Even active readers of serious journalism will be surprised by the lessons that the book contains. It is "must-have" information for all presidents and citizens of the twenty-first century."
One of the ?rst Computer Science sites in Italy, in recent years, the Friuli region has become a very active hub in Computational Physics and other applications of Informatics to Human and Natural Sciences. In particular the University of Udine has developed a tradition in innovative cross-disciplinary research areas involving Computer Science and Physics, providing digital tools for laboratories such as NASA and CERN. The sixth International Symposium "Frontiers of Fundamental and Compu- tional Physics" (FFP6) aimed at providing a platform for a wide range of phy- cists to meet and share thoughts on the latest trends in various research areas including High Energy Physics, Theoretical Physics, Gravitation and Cosmology, Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines were uni?ed by the use of computers as an, often primary, research instrument, or dealing with issues related to information theory. The present Sixth International Symposium in the series wasorganizedatthe UniversityofUdine,Italyfrom26thto29th ofSeptember2004. TheUniversity of in the Udine and the B. M. Birla Science Centre in Hyderabad have collaborated organization of this Symposium and the edition of these Proceedings, under the auspices of their joint initiative the International Institute of ApplicableMat- maticsand InformationSciences. ThecontributionsintheProceedingsaregrouped as follows: * Field Theory, Relativity and Cosmology * Foundations of Physics and of Information Sciences * Nuclear and High-Energy Particle Physics and Astrophysics; Astroparticle Physics * Complex Systems; Fluid Mechanics * New Approaches to Physics Teaching ThisSymposiumhadanattendanceofover100participants. Therewere63- pers/presentations, including 4 introductory invited lectures delivered by the - belLaureatesL. CooperandG. 'tHooft,andbytheeminentphysicistsY.
From reviews of the first edition: "The important feature of the present book is that it starts from the beginning (with only a very modest knowledge assumed) and covers all important topics... The book is very carefully organized [and] ends with 20 pages of useful historic comments. Such a comprehensive and carefully written treatment of fundamentals of the theory will certainly be a basic reference and text book in the future." -- Newsletter of the EMS "This is a fundamental book and none, beginner or expert, could afford to ignore it. Some results are really difficult to be found in other monographs, while others are for the first time included in a book." -- Mathematica "Each chapter begins with an excellent summary of the content and ends with an exercise section... This is really an outstanding book, well written and beautifully produced. It is both a graduate text and a monograph, so it can be recommended to graduate students as well as to specialists." -- Publicationes Mathematicae Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group theory to evolve from beginner to expert: initial insights make use of actual matrices, while later insights come from such structural features as properties of root systems, or relationships among subgroups, or patterns among different subgroups. Topics include a description of all simplyconnected Lie groups in terms of semisimple Lie groups and semidirect products, the Cartan theory of complex semisimple Lie algebras, the Cartan-Weyl theory of the structure and representations of compact Lie groups and representations of complex semisimple Lie algebras, the classification of real semisimple Lie algebras, the structure theory of noncompact reductive Lie groups as it is now used in research, and integration on reductive groups. Many problems, tables, and bibliographical notes complete this comprehensive work, making the text suitable either for self-study or for courses in the second year of graduate study and beyond.
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods.This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works.The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media m
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for any other researcher in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
This is Yukawa's autobiography of his early years, written in Japanese when he was fifty years old. It describes his family background and the education and experience, both social and intellectual, that helped to form his character and direct his career. Especially valuable to the historian of science are his discussions of scientific relationships with his colleague Sin-Itiro Tomonaga, with his teacher Yoshio Nishina, and with his students (who later became his collaborators): Sakata, Taketani, and Kobayashi. The Story ends with the writing of his first scientific paper in English, being the birth of the meson theory of nuclear forces. Also included are the original paper of the meson theory by Prof H Yukawa and an introduction by Prof L M Brown.
This is Yukawa's autobiography of his early years, written in Japanese when he was fifty years old. It describes his family background and the education and experience, both social and intellectual, that helped to form his character and direct his career. Especially valuable to the historian of science are his discussions of scientific relationships with his colleague Sin-Itiro Tomonaga, with his teacher Yoshio Nishina, and with his students (who later became his collaborators): Sakata, Taketani, and Kobayashi. The Story ends with the writing of his first scientific paper in English, being the birth of the meson theory of nuclear forces. Also included are the original paper of the meson theory by Prof H Yukawa and an introduction by Prof L M Brown.
Numbers ... , natural, rational, real, complex, p-adic .... What do you know about p-adic numbers? Probably, you have never used any p-adic (nonrational) number before now. I was in the same situation few years ago. p-adic numbers were considered as an exotic part of pure mathematics without any application. I have also used only real and complex numbers in my investigations in functional analysis and its applications to the quantum field theory and I was sure that these number fields can be a basis of every physical model generated by nature. But recently new models of the quantum physics were proposed on the basis of p-adic numbers field Qp. What are p-adic numbers, p-adic analysis, p-adic physics, p-adic probability? p-adic numbers were introduced by K. Hensel (1904) in connection with problems of the pure theory of numbers. The construction of Qp is very similar to the construction of (p is a fixed prime number, p = 2,3,5, ... ,127, ... ). Both these number fields are completions of the field of rational numbers Q. But another valuation 1 . Ip is introduced on Q instead of the usual real valuation 1 . I* We get an infinite sequence of non isomorphic completions of Q : Q2, Q3, ... , Q127, ... , IR = Qoo* These fields are the only possibilities to com plete Q according to the famous theorem of Ostrowsky.
This is a unique approach to noise theory and its application to physical measurements that will find its place among the graduate course books. In a very systematic way, the foundations are laid and applied in a way that the book will also be useful to those not focusing on optics. Exercises and solutions help students to deepen their knowledge.
This book features 13 papers presented at the Fifth International Symposium on Recurrence Plots, held August 2013 in Chicago, IL. It examines recent applications and developments in recurrence plots and recurrence quantification analysis (RQA) with special emphasis on biological and cognitive systems and the analysis of coupled systems using cross-recurrence methods. Readers will discover new applications and insights into a range of systems provided by recurrence plot analysis and new theoretical and mathematical developments in recurrence plots. Recurrence plot based analysis is a powerful tool that operates on real-world complex systems that are nonlinear, non-stationary, noisy, of any statistical distribution, free of any particular model type and not particularly long. Quantitative analyses promote the detection of system state changes, synchronized dynamical regimes or classification of system states. The book will be of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis of complex systems in general. |
You may like...
Frozen in Time - The Fate of the…
Owen Beattie, John Geiger
Paperback
|