![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > General
Marcellliesz's lectures delivered on October 1957 -January 1958 at the Uni versity of Maryland, College Park, have been previously published only infor mally as a manuscript entitled CLIFFORD NUMBERS AND SPINORS (Chap ters I - IV). As the title says, the lecture notes consist of four Chapters I, II, III and IV. However, in the preface of the lecture notes lliesz refers to Chapters V and VI which he could not finish. Chapter VI is mentioned on pages 1, 3, 16, 38 and 156, which makes it plausible that lliesz was well aware of what he was going to include in the final missing chapters. The present book makes lliesz's classic lecture notes generally available to a wider audience and tries somewhat to fill in one of the last missing chapters. This book also tries to evaluate lliesz's influence on the present research on Clifford algebras and draws special attention to lliesz's contributions in this field - often misunderstood."
This self-contained introduction addresses the novel flow equation approach for many particle systems and provides an up-to-date review of the subject. The text first discusses the general ideas and concepts of the flow equation method, and then in a second part illustrates them with various applications in condensed matter theory. The third and last part of the book contains an outlook with current perspectives for future research.
This book combines the enlarged and corrected editions of both volumes on classical physics stemming from Thirrings famous course. The treatment of classical dynamical systems uses analysis on manifolds to provide the mathematical setting for discussions of Hamiltonian systems, canonical transformations, constants of motion, and perturbation theory. Problems discussed include: nonrelativistic motion of particles and systems, relativistic motion in electromagnetic and gravitational fields, and the structure of black holes. The treatment of classical fields uses the language of differential geometry, treating both Maxwells and Einsteins equations in a compact and clear fashion. The book includes discussions of the electromagnetic field due to known charge distributions and in the presence of conductors, as well as a new section on gauge theories. It discusses the solutions of the Einstein equations for maximally symmetric spaces and spaces with maximally symmetric submanifolds, and concludes by applying these results to the life and death of stars. Numerous examples and accompanying remarks make this an ideal textbook.
Energy and environmental finance (EEF) is an emerging global phenomenon. During the last few decades, many countries started monitoring EEF practices. Major components of these practices include costs, fraud, scandals, and more. Among several problems, the most prevalent is the lack of awareness about the issues of EEF among various stakeholders. The Handbook of Research on Energy and Environmental Finance 4.0 is an international reference that provides understanding and lessons learned in all aspects of EEF in individual, organizational, and societal experiences. This book examines research in the shape of experience, implementation, and application. Covering topics such as clean power, energy poverty, and environmental degradation, this book is a dynamic resource for academicians, researchers, professionals who work within the domains of EEF, EEF regulators, scholars of EEF, managers involved in EEF organizations, law practitioners involved in EEF regulations, auditors involved in audit and control systems of EEF, university professors, and students pursuing studies and research in EEF.
The Bia owie a workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931 1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanis aw Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today s perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanis aw Lech Woronowicz. Mielnik s geometricapproach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz fruitful notion of a compact quantum group and related topics are also addressed."
This book is intended to be self-contained, giving the theory of absolute (equivalent to Lebesgue) and non-absolute (equivalent to Denjoy-Perron) integration by using a simple extension of the Riemann integral. A useful tool for mathematicians and scientists needing advanced integration theory would be a method combining the ideas of the calculus of indefinite integral and Riemann definite integral in such a way that Lebesgue properties can be proved easily.Three important results that have not appeared in any other book distinguish this book from the rest. First a result on limits of sequences under the integral sign, secondly the necessary and sufficient conditions for the various limits under the integral sign and thirdly the application of these results to ordinary differential equations. The present book will give non-absolute integration theory just as easily as the absolute theory, and Stieltjes-type integration too.
Heterostructures consist of combinations of different materials, which are in contact through at least one interface. Magnetic heterostructures combine different physical properties which do not exist in nature. This book provides the first comprehensive overview of an exciting and fast developing field of research, which has already resulted in numerous applications and is the basis for future spintronic devices.
The speed of light, the fine structure constant, and Newton's constant of gravity - these are just three among the many physical constants that define our picture of the world. Where do they come from? Are they constant in time and across space? In this book, physicist and author Harald Fritzsch invites the reader to explore the mystery of the fundamental constants of physics in the company of Isaac Newton, Albert Einstein, and a modern-day physicist. The conversation that the three scientists are imagined to have provides an entertaining introduction to the constants and covers topics ranging from atomic, nuclear, and particle physics to astrophysics and cosmology.
This collection of essays by scientists from around the world honors Victor Frederick Weisskopf, one of the true luminaries of twentieth- century physics. Among the many breakthroughs his research has yielded have been the theory of the widths of energy levels of the electron, the "Clouded Crystal Ball" model of nuclear structure, and the "MIT Bag" model of hadronic matter. For his contributions to physics, Dr. Weisskopf has been awarded the Max Planck Medal, the J. Robert Oppenheimer Medal, and most recently, the Karl Taylor Compton Award. The essays in this book, by some of the world's leading physicists, including seven nobel prize winners, address topics ranging from Weisskopf's contributions to theoretical physics to more intimate views of his role as teacher, friend, and humanist. Contributors include: Hans A. Bethe; Hendrick B.G. Casimir; Georges Charpak; Sidney D. Drell; Evgenii L. Feinberg; Herman Feshbach; Jerome I. Friedman and Henry W. Kendall; Murray Gell-Mann; Kurt Gottfried; J. David Jackson; Maurice Jacob; Francis E. Low; Ove Nathan; Norman F. Ramsey; Walter Thirring; and Charles H. Townes. For all his accomplishments, Victor Weisskopf remains a contemplative and unpretentious man. Throughout the world's scientific community he is known simply as Viki. The man and his work are revealed here by the collaborators, colleagues, and friends who know him best.
The worlds of Wall Street and The City have always held a certain allure, but in recent years have left an indelible mark on the wider public consciousness and there has been a need to become more financially literate. The quantitative nature of complex financial transactions makes them a fascinating subject area for mathematicians of all types, whether for general interest or because of the enormous monetary rewards on offer. An Introduction to Quantitative Finance concerns financial derivatives - a derivative being a contract between two entities whose value derives from the price of an underlying financial asset - and the probabilistic tools that were developed to analyse them. The theory in the text is motivated by a desire to provide a suitably rigorous yet accessible foundation to tackle problems the author encountered whilst trading derivatives on Wall Street. The book combines an unusual blend of real-world derivatives trading experience and rigorous academic background. Probability provides the key tools for analysing and valuing derivatives. The price of a derivative is closely linked to the expected value of its pay-out, and suitably scaled derivative prices are martingales, fundamentally important objects in probability theory. The prerequisite for mastering the material is an introductory undergraduate course in probability. The book is otherwise self-contained and in particular requires no additional preparation or exposure to finance. It is suitable for a one-semester course, quickly exposing readers to powerful theory and substantive problems. The book may also appeal to students who have enjoyed probability and have a desire to see how it can be applied. Signposts are given throughout the text to more advanced topics and to different approaches for those looking to take the subject further.
Please note this book is suitable for any student studying: Exam board: OCR Level: A Level Subject: Physics A First teaching: 2015; first exams: 2017 Oxford Revise is a fresh, evidence-based approach to studying; created by the teacher-trusted Oxford Science author team and informed by the latest research into the best ways to make learning stick, it organises content in the most effective way for successful learning, ideal for independent study throughout the school year and in the lead-up to exams. Based on principles of cognitive science, the simple three-step Knowledge, Retrieval, and Practice approach helps students to organise information and commit it to long-term memory, improve retention and recall, and apply knowledge successfully with extensive exam-style practice. It's everything students need to study effectively and fully prepare for their exams, in one convenient book. Each paperback purchased includes free access to an ebook version of the title. Details on how to access it are printed inside the book. Answers will be available online at oxfordrevise.com/scienceanswers.
An easy-to-follow guide to introductory physics, from the Big Bang to relativity All science, technology, engineering, and math majors in college and university require some familiarity with physics. Other career paths, like medicine, are also only open to students who understand this fundamental science. But don't worry if you find physics to be intimidating or confusing. You just need the right guide! In Physics I For Dummies, you'll find a roadmap to physics success that walks you through every major topic in introductory physics, including motion, energy, waves, thermodynamics, electromagnetism, relativity, and more. You'll learn the basic principles and math formulas of physics through clear and straightforward examples and instruction, and without unnecessary jargon or complicated theory. In this book, you'll also find: Up-to-date examples and explanations appearing alongside the latest discoveries and research in physics, discussed at a level appropriate for beginning students All the info found in an intro physics course, arranged in an intuitive sequence that will give first-year students a head start in their high school or college physics class The latest teaching techniques to ensure that you remember and retain what you read and practice in the book Physics I For Dummies is proof that physics can fun, accessible, challenging, and rewarding, all at the same time! Whether you're a high school or undergraduate student looking for a leg-up on basic physics concepts or you're just interested in how our universe works, this book will help you understand the thermodynamic, electromagnetic, relativistic, and everything in between.
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unified approach to field theories for elastic solids, viscous fluids, and heat-conducting electromagnetic solids and fluids that include nonlocal effects in both space and time (memory effects). The solutions to the field equations agree remarkably well with atomic theories and experimental observations.
Quantum Simulations of Materials and Biological Systems features contributions from leading world experts in the fields of density functional theory (DFT) and its applications to material and biological systems. The recent developments of correlation functionals, implementations of Time-dependent algorithm into DFTB+ method are presented. The applications of DFT method to large materials and biological systems such as understanding of optical and electronic properties of nanoparticles, X-ray structure refinement of proteins, the catalytic process of enzymes and photochemistry of phytochromes are detailed. In addition, the book reviews the recent developments of methods for protein design and engineering, as well as ligand-based drug design. Some insightful information about the 2011 International Symposium on Computational Sciences is also provided. Quantum Simulations of Materials and Biological Systems is aimed at faculties and researchers in the fields of computational physics, chemistry and biology, as well as at the biotech and pharmaceutical industries.
This book covers the experimental and theoretical study of convection in non-isothermal ferro-nanofluids (FNFs). Since FNFs are not transparent and magnetic fields are very sensitive to the shape of the boundary between magnetic and nonmagnetic media, special flow visualization techniques based on the use of thermo-sensitive liquid crystal films, infrared cameras, as well as local and integral temperature sensors are discussed in the book. This book considers several major configurations of convective chambers and the applied magnetic field. For each of them, the stability boundaries are determined theoretically and experimentally. The physical types of dominant instabilities and the characteristics of their interactions are subsequently established using linear and weakly non-linear hydrodynamic stability analyses and elements of bifurcation theory. The book also discusses the potential of using magnetically controlled ferro-nanofluids as a heat carrier in situations where heat removal by natural convection is not possible due to the lack of gravity (orbital stations) or extreme confinement (microelectronics). Researchers and practitioners working in the areas of fluid mechanics, hydrodynamic stability, and heat and mass transfer will benefit from this book.
Epitaxial growth lies at the heart of a wide range of industrial and technological applications. Recent breakthroughs, experimental and theoretical, allow actual atom-by-atom manipulation and an understanding of such processes, opening up a totally new area of unprecedented nanostructuring. The contributions to Atomistic Aspects of Epitaxial Growth are divided into five main sections, taking the reader from the atomistic details of surface diffusion to the macroscopic description of epitaxial systems. many of the papers contain substantial background material on theoretical and experimental methods, making the book suitable for both graduate students as a supplementary text in a course on epitaxial phenomena, and for professionals in the field.
The aim of this book is to advocate and promote network models of linguistic systems that are both based on thorough mathematical models and substantiated in terms of linguistics. In this way, the book contributes first steps towards establishing a statistical network theory as a theoretical basis of linguistic network analysis the boarder of the natural sciences and the humanities. This book addresses researchers who want to get familiar with theoretical developments, computational models and their empirical evaluation in the field of complex linguistic networks. It is intended to all those who are interested in statistical models of linguistic systems from the point of view of network research. This includes all relevant areas of linguistics ranging from phonological, morphological and lexical networks on the one hand and syntactic, semantic and pragmatic networks on the other. In this sense, the volume concerns readers from many disciplines such as physics, linguistics, computer science and information science. It may also be of interest for the upcoming area of systems biology with which the chapters collected here share the view on systems from the point of view of network analysis.
The Cargese Summer School "Low Dimensional Applications of Quantum Field Theory" was held in July 1995. The School was dedicated to the memory of Claude Itzykson. This session focused on the recent progress in quantum field theory in two dimen sions with a particular emphasis on integrable models and applications of quantum field theory to condensed matter physics. A large fraction of the school was also devoted to a detailed review of the exciting developments in four dimensional super symmetric Yang-Mills theory. The diversity of the topics presented constitute, in our opinion, one of the most attractive features of these proceedings. Some contributions constitute a very thor ough introduction to their subject matter and should be helpful to advanced students in the field while others present entirely new research, not previously published, and should be of considerable interest to the specialist. There were in depth introductory lectures on the application of conformal field theory techniques to disordered systems, on the quantum Hall effect, on quantum in tegrable systems, on the thermodynamic Bethe Ansatz and on the new developments in supersymmetric gauges theories. The computation of the three point function of the Liouville model using conformal bootstrap methods was presented in detail."
This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors's lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.
Historical accounts of successful laboratories often consist primarily of reminiscences by their directors and the eminent people who studied or worked in these laboratories. Such recollections customarily are delivered at the celebration of a milestone in the history of the laboratory, such as the institution's fiftieth or one hundredth anniversary. Three such accounts of the Cavendish Laboratory at the University of Cambridge have been recorded. The first of these, A History of the Cavendish Laboratory, 1871-1910, was published in 1910 in honor of the twenty fifth anniversary of Joseph John Thomson's professorship there. The second, The Cavendish Laboratory, 1874-1974, was published in 1974 to commemorate the one hundredth anniversary of the Cavendish. The third, A Hundred Years and More of Cambridge Physics, is a short pamphlet, also published at the centennial of the 1 Cavendish. These accounts are filled with the names of great physicists (such as James Clerk Maxwell, Lord Rayleigh, J. J. Thomson, Ernest Rutherford, and William Lawrence Bragg), their glorious achievements (for example, the discoveries of the electron, the neutron, and DNA) and interesting anecdotes about how these achievements were reached. But surely a narrative that does justice to the history of a laboratory must recount more than past events. Such a narrative should describe a living entity and provide not only details of the laboratory's personnel, organization, tools, and tool kits, but should also explain how these components interacted within 2 their wider historical, cultural, and social contexts."
This is a major revision of a classic, best selling reference book. Originally published by the American Institute of Physics under the title "Physics Vade Mecum" in 1981, and then the second edition in 1989 with the new title "A Physicist's Desk Reference", this third edition has been completely updated and modernized to reflect current modern physics. The book is a concise compilation of the most frequently used physics data and formulae with their derivations. This revision has six more chapters than the second edition, outdated chapters dropped, and new chapters added on atmospheric physics, electricity and magnetism, elementary particle physics, fluid dynamics, geophysics, nonlinear physics, particle accelerators, polymer physics, and quantum theory. There is a new last chapter on practical laboratory data. The references and bibliographies have been updated. This book is an indispensable tool for the researcher, professional and student in physics as well as other scientists who use physics data. The editors of this volume are Richard Cohen, author of the first two chapters of PDR and the "Physics Quick Reference Guide"; David Lide, one of the editors of the previous two editions and the editor of the "CRC Handbook of Physics and Chemistry"; and George Trigg, editor of the "Encyclopedia of Physics" and the "Encyclopedia of Applied Physics" (VCH). The market for this classic reference book includes the practicing scientist, including engineers, chemists, and biologists; and students. |
![]() ![]() You may like...
Notices of the Proceedings at the…
Royal Institution of Great Britain
Paperback
R641
Discovery Miles 6 410
|