![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > General
It is not uncommon to find engineers in test labs or design groups who have not had occasion to use the mathematical tools acquired in college. When suddenly faced with vibration issues they find themselves ill equipped to get a solid grasp of the vibration process. It is the intent of this technical reference to provide access to vibration theory, initially at a very elementary level, then progressing from basic analytical formulations toward the more mature mathematical representations associated with eigenvectors and the Fourier Transform. Mode shapes are introduced without any reference to the eigenvalue problem, but connected immediately to simple coordinate transformations in two and three dimensions. This allows a rather simple picture of operators, ultimately leading to a straight forward derivation of the Frequency Response Function (FRF) formula. It is hoped that many engineers will find their way back into a more analytical approach to vibration problems. providing fresh viewpoints from time to time, such as the development of modal force as a contravariant vector, providing a detailed view of the FRF as a superposition of modal FRFs.
This book is devoted to one of the most interesting and rapidly developing areas of modern nonlinear physics and mathematics - theoretical, analytical andnumerical, studyofthestructureanddynamicsofone-dimensionalaswell as two- and three-dimensional solitons and nonlinear wave packets described by the Korteweg-de Vries (KdV), Kadomtsev-Petviashvili (KP), nonlinear Schr] odinger (NLS) and derivative nonlinear Schr] odinger (DNLS) classes of equations. Special attention is paid to generalizations (relevant to various complex physical media) of these equations, accounting for higher-order d- persion corrections, in?uence of dissipation, instabilities, and stochastic ?- tuations of the wave ?elds. We present here a coordinated approach to the theory, simulations, and applications of the nonlinear one-, two-, and three-dimensional solitary wave solutions. Overall, the content of the book is a systematic account of results notonlyalreadyknownintheliterature, butalsothoseofneworiginalstudies related to the theory of models allowing soliton solutions, and analyses of the stability and asymptotics of these solutions. We give signi?cant consideration to numerical methods and results of numerical simulations of the structure and dynamics of solitons and nonlinear wave packets. Together with deep insights into the theory, applications to various branches of modern physics are considered, especially to plasma physics (such as space plasmas including ionospheric and magnetospheric processes), hydrodynamics, and atmosphere dynamics. Presently, thetheoryofone-dimensionalnonlinearequationsoftheclasses consideredbytheauthorsiswelldeveloped, andtheprogressinstudiesofthe structure and evolution of one-dimensional solitons and wave packets is ob- ous. This progress was especially fast after the discovery of hidden algebraic symmetries of the KdV, NLS, and other (integrable by the inverse scatt- ing transform (IST) method) classes of one-dimensional evolution equations
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
This book provides an overview of many of the dramatic recent developments in the fields of astronomy, cosmology and fundamental physics. Topics include observations of the structure in the cosmic background radiation, evidence for an accelerating Universe, the extraordinary concordance in the fundamental parameters of the Universe coming from these and other diverse observations, the search for dark matter candidates, evidence for neutrino oscillations, space experiments on fundamental physics, and discoveries of extrasolar planets. This book will be useful for researchers and graduate students who wish to have a broad overview of the current developments in these fields.
This highly unusual book is a serious inquiry into Schrodinger's question, "What is life?", and at the same time a celebration of life itself. It takes the reader on a voyage of discovery through many areas of contemporary physics, from non-equilibrium thermodynamics and quantum optics to liquid crystals and fractals, all necessary for illuminating the problem of life. In the process, the reader is treated to a rare and exquisite view of the organism, gaining novel insights, not only into the physics but also into "the poetry and meaning of being alive". This book is intended for all who love the subject.
The Poincare Seminar is held twice a year at the Institut Henri
Poincare in Paris. This volume contains the lectures of the 2002
seminars. The main topic of the first one was the vacuum energy, in
particular the Casimir effect and the nature of the cosmological
constant. The second one concentrated on renormalization, giving a
comprehensive account of its mathematical structure and
applications to high energy physics, statistical mechanics and
classical mechanics.
As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size."
The purpose of this monograph is to show that, in the radiation regime, there exists a Hamiltonian description of the dynamics of a massless scalar field, as well as of the dynamics of the gravitational field. The authors construct such a framework extending the previous work of Kijowski and Tulczyjew. They start by reviewing some elementary facts concerning Hamiltonian dynamical systems and then describe the geometric Hamiltonian framework, adequate for both the usual asymptotically flat-at-spatial-infinity regime and for the radiation regime. The text then gives a detailed description of the application of the new formalism to the case of the massless scalar field. Finally, the formalism is applied to the case of Einstein gravity. The Hamiltonian role of the Trautman--Bondi mass is exhibited. A Hamiltonian definition of angular momentum at null infinity is derived and analysed.
This book provides a broad introductory survey of this remarkable field, aiming to establish and clearly differentiate its physical principles, and also to provide a snapshot portrait of many of the most prominent current applications. Primary emphasis is placed on developing an understanding of the fundamental photonic origin behind the mechanism that operates in each type of effect. To this end, the first few chapters introduce and develop core theory, focusing on the physical significance and source of the most salient parameters, and revealing the detailed interplay between the key material and optical properties. Where appropriate, both classical and photonic (quantum mechanical) representations are discussed. The number of equations is purposely kept to a minimum, and only a broad background in optical physics is assumed. With copious examples and illustrations, each of the subsequent chapters then sets out to explain and exhibit the main features and uses of the various distinct types of mechanism that can be involved in optical nanomanipulation, including some of the very latest developments. To complete the scene, we also briefly discuss applications to larger, biological particles. Overall, this book aims to deliver to the non-specialist an amenable introduction to the technically more advanced literature on individual manipulation methods. Full references to the original research papers are given throughout, and an up-to-date bibliography is provided for each chapter, which directs the reader to other selected, more specialised sources.
What do yin-yang and the Lorenzian butterfly in chaos have in common? The outside perspective. Only by going very far outside - beyond the end of the world - do certain aspects of the world become intelligible. The computer makes it possible today to go after the interface. What does the world look like if you are an internally chaotic part? Is the world just a difference, an interface, a forcing function? Is it possible to identify those features which exist only from the inside? How far does the meta-unmaskability go? Is quantum mechanics a virtual reality? Can the micro-interface be manipulated? Such questions are tackled in this fascinating book.
The subject of the book is the development of physics in the 18th century centered upon the fundamental contributions of Leonhard Euler to physics and mathematics. This is the first book devoted to Euler as a physicist. Classical mechanics are reconstructed in terms of the program initiated by Euler in 1736 and its completion over the following decades until 1760. The book examines how Euler coordinated his progress in mathematics with his progress in physics.
The Centre de recherches mathCmatiques (CRM) was created in 1968 by the Universite de Montreal to promote research in the mathematical sci- ences. It is now a national institute that hosts several groups, holds special theme years, summer schools, workshops, postdoctoral program. The focus of its scientific activities ranges from pure to applied mathematics, and includes satistics, theoretical computer science, mathematical methods in biology and life sciences, and mathematical and theoretical physics. The CRM also promotes collaboration between mathematicians and industry. It is subsidized by the Natural Sciences and Engineering Research Council of Canada, the Fonds FCAR od the Province of Quebec, the Canadian Institute for Advanced Research and has private endowments. Current ac- tivities, fellowships, and annual reports can be found on the CRM web page at http://www . CRM. UMontreal. CAl. The CRM Series in Mathematical Physics will publish monographs, lec- ture notes, and proceedings base on research pursued and events held at the Centre de recherches mathematiques. Yvan Saint-Aubin Montreal Preface The subject of this three-week school was the explicit integration, that is, analytical as opposed to numerical, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). The result of such integration is ideally the "general solution," but there are numerous physical systems for which only a particular solution is accessible, for instance the solitary wave of the equation of Kuramoto and Sivashinsky in turbulence.
This volume is a textbook for a year-long graduate level course in All research universities have applied mathematics for scientists and engineers. such a course, which could be taught in different departments, such as mathematics, physics, or engineering. I volunteered to teach this course when I realized that my own research students did not learn much in this course at my university. Then I learned that the available textbooks were too introduc tory. While teaching this course without an assigned text, I wrote up my lecture notes and gave them to the students. This textbook is a result of that endeavor. When I took this course many, many, years ago, the primary references were the two volumes of P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953). The present text returns the contents to a similar level, although the syllabus is quite different than given in this venerable pair of books."
This book gives an analysis of Hertz's posthumously published Principles of Mechanics in its philosophical, physical and mathematical context. In a period of heated debates about the true foundation of physical sciences, Hertz's book was conceived and highly regarded as an original and rigorous foundation for a mechanistic research program. Insisting that a law-like account of nature would require hypothetical unobservables, Hertz viewed physical theories as (mental) images of the world rather than the true design behind the phenomena. This paved the way for the modern conception of a model. Rejecting the concept of force as a coherent basic notion of physics he built his mechanics on hidden masses (the ether) and rigid connections, and formulated it as a new differential geometric language. Recently many philosophers have studied Hertz's image theory and historians of physics have discussed his forceless mechanics. The present book shows how these aspects, as well as the hitherto overlooked mathematical aspects, form an integrated whole which is closely connected to the mechanistic world view of the time and which is a natural continuation of Hertz's earlier research on electromagnetism. Therefore it is also a case study of the strong interactions between philosophy, physics and mathematics. Moreover, the book presents an analysis of the genesis of many of the central elements of Hertz's mechanics based on his manuscripts and drafts. Hertz's research program was cut short by the advent of relativity theory but its image theory influenced many philosophers as well as some physicists and mathematicians and its geometric form had a lasting influence on advanced expositions of mechanics.
Learn how scientists channel energy from the sun to power awesome innovations! Created in collaboration with the Smithsonian Institution, this STEAM book will ignite a curiosity about STEAM topics through real-world examples. It features a hands-on STEAM challenge that is perfect for makerspaces and that guides students step-by-step through the engineering design process. Make STEAM career connections with career advice from actual Smithsonian employees working in STEAM fields. Introduce early science topics to young readers with this STEAM book that is ideal for 1st grade students or ages 5-7.
The Kronecker product of matrices plays a central role in mathematics and in applications found in engineering and theoretical physics. These applications are signal processing, statistical physics, quantum groups and quantum computers. This book provides a comprehensive introduction to the Kronecker product of matrices together with its software implementation in C++ using an object-oriented design.
This work presents a Clean Quantum Theory of the Electron, based on Dirac's equation. Clean in the sense of a complete mathematical explanation of the well known paradoxes of Dirac's theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin 1/2) moving in a given electromagnetic field. This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, a la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A Schroedinger particle, such as a light quantum, experiences a very different (time-dependent) Precise Predictablity of Observables. An attempt is made to compare both cases.
This monograph is mostly devoted to the problem of the geome- trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La- grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non- linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D.
This book, an abridgment of Volumes I and II of the highly
respected Group Theory in Physics, presents a carefully constructed
introduction to group theory and its applications in physics. The
book provides anintroduction to and description of the most
important basic ideas and the role that they play in physical
problems. The clearly written text contains many pertinent examples
that illustrate the topics, even for those with no background in
group theory.
Numerical methods are playing an ever-increasing role in physics and engineering. This is especially true after the recent explosion of computing power on the desk-top. This book is aimed at helping the user to make intelligent use of this power tool. Each method is introduced through realistic examples and actual computer programs. The explanations provide the background for making a choice between similar approaches and the knowledge to explore the network for the appropriate existing codes. Tedious proofs and derivations, on the other hand, are delegated to references. Examples of uncoventional methods are also given to stimulate readers in exploring new ways of solving problems.
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC'2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23-24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
Econophysics research studies, which apply methods developed by physicists to solve problems in economics, enable you to deepen your understanding of what financial systems are and how they operate. Articles in this book identify and explain the statistical behavior of the underlying networks in trading, banking, and stock markets as well as other financial systems. Authors also debate the latest issues arising from these econophysics studies.
This book is devoted to the theory of coupled electro-magneto-thermo-elastic fields excited in different bodies by various sources, both static and dynamic. It presents the classical piezoelectric and piezomagnetic effects, the Mindlin's electroelastic coupling due to a polarization gradient, and different combinations of these effects with thermoelasticity.
|
You may like...
|