![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > General
An entirely new theory of the creation of the universe is presented based upon energy being a real substance.
These proceedings from the 2012 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
This accessible and easy-to-follow book offers a new approach to consciousness. The author 's eclectic style combines new physics-based insights with those of analytical philosophy, phenomenology, cognitive science and neuroscience. He proposes a view in which the mechanistic framework of classical physics and neuroscience is complemented by a more holistic underlying framework in which conscious experience finds its place more naturally.
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews
This proceedings volume collects review articles that summarize research conducted at the Munich Centre of Advanced Computing (MAC) from 2008 to 2012. The articles address the increasing gap between what should be possible in Computational Science and Engineering due to recent advances in algorithms, hardware, and networks, and what can actually be achieved in practice; they also examine novel computing architectures, where computation itself is a multifaceted process, with hardware awareness or ubiquitous parallelism due to many-core systems being just two of the challenges faced. Topics cover both the methodological aspects of advanced computing (algorithms, parallel computing, data exploration, software engineering) and cutting-edge applications from the fields of chemistry, the geosciences, civil and mechanical engineering, etc., reflecting the highly interdisciplinary nature of the Munich Centre of Advanced Computing.
In Statistical Physics one of the ambitious goals is to derive rigorously, from statistical mechanics, the thermodynamic properties of models with realistic forces. Elliott Lieb is a mathematical physicist who meets the challenge of statistical mechanics head on, taking nothing for granted and not being content until the purported consequences have been shown, by rigorous analysis, to follow from the premises. The present volume contains a selection of his contributions to the field, in particular papers dealing with general properties of Coulomb systems, phase transitions in systems with a continuous symmetry, lattice crystals, and entropy inequalities. It also includes work on classical thermodynamics, a discipline that, despite many claims to the contrary, is logically independent of statistical mechanics and deserves a rigorous and unambiguous foundation of its own. The articles in this volume have been carefully annotated by the editors.
Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations.
You ll learn all the underlying science and how to perform all the latest analytical techniques that plasma polarization spectroscopy (PPS) offers with this new book. The authors report on recent results of laboratory experiments, keeping you current with all the latest developments and applications in the field. There is also a timely discussion centered on instrumentation that is crucial to your ability to perform successful PPS experiments.
Metal hydrides are of inestimable importance for the future of hydrogen energy. This unique monograph presents a clear and comprehensive description of the bulk properties of the metal-hydrogen system. The statistical thermodynamics is treated over a very wide range of pressure, temperature and composition. Another prominent feature of the book is its elucidation of the quantum mechanical behavior of interstitial hydrogen atoms, including their states and motion. The important topic of hydrogen interaction with lattice defects and its materials-science implications are also discussed thoroughly. This second edition has been substantially revised and updated.
Consciousness is one of the major unsolved problems in science. How do the feelings and sensations making up conscious experience arise from the concerted actions of nerve cells and their associated synaptic and molecular processes? Can such feelings be explained by modern science, or is there an entirely different kind of explanation needed? And how can this seemingly intractable problem be approached experimentally? How do the operations of the conscious mind emerge out of the specific interactions involving billions of neurons? This multi-authored book seeks answers to these questions within a range of physically based frameworks, i.e, the underlying assumption is that consciousness can be understood using the intellectual potential of modern physics and other sciences. There are a number of theories of consciousness in existence, some of which are based on classical physics while some others require the use of quantum concepts. The latter ones have drawn a lot of criticism from the present-day scientific establishment while simultaneously claiming that classical approaches are doomed to failure. This book presents the reader with a spectrum of opinions from both sides of this on-going scientific debate, letting him/her decide which of these approaches are most likely to succeed.
This bibliographic guide offers users a basic overview of the current trends and the best, most important, and most up-to-date paper and electronic information resources in the field of physics. The author has selectively chosen and succinctly annotated a list of hundreds of major tools used by physical scientists and researchers, including bibliographic sources, abstracting and indexing databases, journals, books, online sources, and other subject-specific non-bibliographic tools. Stern also provides information on grants, personal bibliographic database tools, document delivery, copyright and reserves. In addition, he discusses future developments, directions, and trends in the field, and in the concluding chapter he outlines the history and developments of the physics. Designed to help students, new researchers in the field of physics, and working physicists in need of additional information resources outside their normal field of study, this is an invaluable reference, research, and collectio
The relation between mathematics and physics has a long history, in which the role of number theory and of other more abstract parts of mathematics has recently become more prominent. More than ten years after a first meeting in 1989 between number theorists and physicists at the Centre de Physique des Houches, a second 2-week event focused on the broader interface of number theory, geometry, and physics. This book is the result of that exciting meeting, and collects, in 2 volumes, extended versions of the lecture courses, followed by shorter texts on special topics, of eminent mathematicians and physicists. The present volume has three parts: Random matrices, Zeta functions, Dynamical systems. The companion volume is subtitled: On Conformal Field Theories, Discrete Groups and Renormalization and will be published in 2006 (Springer, 3-540-30307-3).
This book focuses on the analysis and design of advanced techniques for on-line automatic computational monitoring of pipelines and pipe networks. It discusses how to improve the systems' security considering mathematical models of the flow, historical flow rate and pressure data, with the main goal of reducing the number of sensors installed along a pipeline. The techniques presented in the book have been implemented in digital systems to enhance the abilities of the pipeline network's operators in recognizing anomalies. A real leak scenario in a Mexican water pipeline is used to illustrate the benefits of these techniques in locating the position of a leak. Intended for an interdisciplinary audience, the book addresses researchers and professionals in the areas of mechanical, civil and control engineering. It covers topics on fluid mechanics, instrumentation, automatic control, signal processing, computing, construction and diagnostic technologies.
Albert Einstein and Max Born were great friends. Their letters span
40 years and two world wars. In them they argue about quantum
theory, agree about Beethoven's heavenly violin and piano duets
(that they played together when they met) and chat about their
families. Equally important, the men commiserate over the tragic
plight of European Jewry and discuss what part they should play in
the tumultuous politics of the time.
This volume consists of papers developed from a joint ACE/ISSI symposium at the occasion of the eightieth birthday of Johannes Geiss. The symposium explored insights into the composition of solar-system and galactic matter that have been brought about by recent space missions, ground-based studies, and theoretical advances. Coverage includes linking primordial to solar composition, planetary samples, solar sources and fractionation processes, and interstellar gas and Cosmic rays.
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, and on pure mathematics and its practical applications. The interaction of these facets is demonstrated by concrete examples, including discrete conformal mappings, discrete complex analysis, discrete curvatures and special surfaces, discrete integrable systems, conformal texture mappings in computer graphics, and free-form architecture. This richly illustrated book will convince readers that this new branch of mathematics is both beautiful and useful. It will appeal to graduate students and researchers in differential geometry, complex analysis, mathematical physics, numerical methods, discrete geometry, as well as computer graphics and geometry processing.
This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory. This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces. This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field. Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University. Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations. Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science.
What do yin-yang and the Lorenzian butterfly in chaos have in common? The outside perspective. Only by going very far outside - beyond the end of the world - do certain aspects of the world become intelligible. The computer makes it possible today to go after the interface. What does the world look like if you are an internally chaotic part? Is the world just a difference, an interface, a forcing function? Is it possible to identify those features which exist only from the inside? How far does the meta-unmaskability go? Is quantum mechanics a virtual reality? Can the micro-interface be manipulated? Such questions are tackled in this fascinating book.
This is the second volume in a series of lecture notes based on the highly s- cessful Euro Summer School on Exotic Beams that has been running yearly since 1993 (apart from 1999) and is planned to continue to do so. It is the aim of the School and these lecture notes to provide an introduction to - dioactive ion beam (RIB) physics at the level of graduate students and young postdocs starting out in the ?eld. Each volume will contain lectures covering a range of topics from nuclear theory to experiment to applications. Our understanding of atomic nuclei has undergone a major re-orientation over the past two decades and seen the emergence of an exciting ?eld of research: the study of exotic nuclei. The availability of energetic beams of short-lived nuclei, referred to as radioactive ion beams (RIBs), has opened the way to the study of the structure and dynamics of thousands of nuclear species never before observed in the laboratory. In its 2004 report "Persp- tives for Nuclear Physics Research in Europe in the Coming Decade and - yond", the Nuclear Physics European Collaboration Committee (NuPECC) statesthatthe?eldofRIBphysicsisoneofthemostimportantdirectionsfor the future science programme in Europe. In 2005 it published its "Roadmap for Construction of Nuclear Physics Research Infrastructures in Europe". |
![]() ![]() You may like...
Principles Of Management Accounting - A…
C. Cairney, R. Chivaka, …
Paperback
R726
Discovery Miles 7 260
Uncertainty Quantification and…
Eduardo Souza De Cursi, Rubens Sampaio
Hardcover
Capture and Relaxation in Self-Assembled…
Robson Ferreira, Gerald Bastard
Hardcover
R3,070
Discovery Miles 30 700
Numerical Linear Algebra with Julia
Eric Darve, Mary Wootters
Paperback
R2,267
Discovery Miles 22 670
Fiber Optic Sensors - Current Status and…
Ignacio R. Matias, Satoshi Ikezawa, …
Hardcover
R5,435
Discovery Miles 54 350
|