![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > General
Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.
For courses in introductory calculus-based physics. A research-driven approach to physics Physics for Scientists and Engineers incorporates Physics Education Research and cognitive science best practices that encourage conceptual development, problem-solving skill acquisition, and visualization. Knight stresses qualitative reasoning through physics principles before formalizing physics mathematically, developing student problem-solving skills with a systematic, scaffolded approach. The text presents a finely tuned, practical introduction to physics with problems that relate physics to everyday life and includes models, modeling, and advanced topics. With the 5th Edition, new and expanded media and assessments in Mastering and the Pearson eText provide fully integrated print and digital resources for both the active and traditional classroom. New content includes key topics such as Entropy quantitatively, Viscosity and Poiseuille's Equation, and Carnot Efficiency details.
The most comprehensive book ever written on the Andromeda Galaxy is here! Written for the serious amateur, fully illustrated with beautiful color photographs, a complete history and the latest research findings. Help and guidance is provided for the amateur astronomer. This book is destined to become a standard reference book in astronomy.
GU Chaohao The soliton theory is an important branch of nonlinear science. On one hand, it describes various kinds of stable motions appearing in - ture, such as solitary water wave, solitary signals in optical ?bre etc., and has many applications in science and technology (like optical signal communication). On the other hand, it gives many e?ective methods ofgetting explicit solutions of nonlinear partial di?erential equations. Therefore, it has attracted much attention from physicists as well as mathematicians. Nonlinearpartialdi?erentialequationsappearinmanyscienti?cpr- lems. Getting explicit solutions is usually a di?cult task. Only in c- tain special cases can the solutions be written down explicitly. However, for many soliton equations, people have found quite a few methods to get explicit solutions. The most famous ones are the inverse scattering method, B] acklund transformation etc.. The inverse scattering method is based on the spectral theory of ordinary di?erential equations. The Cauchyproblemofmanysolitonequationscanbetransformedtosolving a system of linear integral equations. Explicit solutions can be derived when the kernel of the integral equation is degenerate. The B] ac ] klund transformation gives a new solution from a known solution by solving a system of completely integrable partial di?erential equations. Some complicated "nonlinear superposition formula" arise to substitute the superposition principlein linear science."
In 1997, contrary to the ruling paradigm which was that of a dark matter ?lled, decelerating universe, my work pointed to a dark energydriven- celerating universe with a small cosmological constant. Moreover, the many supposedly accidental Large Number relations in cosmology, including the mysterious Weinbergformula were now deduced from the theory. Obser- tionalcon?rmationforthisscenariocamein1998, whiledarkenergyitselfwas ?nally recon?rmed in 2003, thanks to the Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey. The 1997, and subsequent work was the consequence of mainly three cons- erations: dark energy or the well known Zero Point Field, fuzzy spacetime and ?uctuations. Indeed String Theory and Quantum Gravity approaches have had to discard the smooth spacetime of General Relativity and Qu- tum Field Theory, in a quest for a uni?ed description of these two pillars of twentieth century physics. This book is the result of some seventy ?ve papers published in international journals, andpartlyanearlierbook,"TheChaoticUniverse: FromthePlanck to the Hubble Scale" (Nova Science, New York, 2001), as also several lectures delivered in Universities and institutes in the United States, Canada and - rope. It describes how, in a simple and somewhat conventional framework, an underpinning of Planck scale oscillators in the ubiquitous Zero Point Field or dark energy leads to a uni?ed description of phenomena involving elementary particles and the cosmos. In particular, apart from the cosmology mentioned above, these considerations lead to a uni?ed description of all interactions, includinggravitation, thoughinanextended gauge ?eld treatment.
Shafarevich's Basic Algebraic Geometry has been a classic and
universally used introduction to the subject since its first
appearance over 40 years ago. As the translator writes in a
prefatory note, For all advanced undergraduate and beginning
graduate] students, and for the many specialists in other branches
of math who need a liberal education in algebraic geometry,
Shafarevich s book is a must.'' The third edition, in addition to
some minor corrections, now offers a new treatment of the
Riemann--Roch theorem for curves, including a proof from first
principles.
In this book for the first time two scientific fields - consensus
formation and synchronization of communications - are presented
together and examined through their interrelational aspects, of
rapidly growing importance. Both fields have indeed attracted
enormous research interest especially in relation to complex
networks.
This monographcovers dynamical inverse problems, that is problems whose data are the values of wave fields. It deals with the problem of determination of one or more coefficients of a hyperbolic equation or a system of hyperbolic equations. The desired coefficients are functions of point. Most attention is given to the case where the required functions depend only on one coordinate. The first chapter of the book deals mainly with methods of solution of one-dimensional inverse problems. The second chapter focuses on scalar inverse problems of wave propagation in a layered medium. In the final chapter inverse problems for elasticity equations in stratified media and acoustic equations for moving media are given.
* Metivier is an expert in the field of pdes/math physics, with a particular emphasis on shock waves. * New monograph focuses on mathematical methods, models, and applications of boundary layers, present in many problems of physics, engineering, fluid mechanics. * Metivier has good Birkhauser track record: one of the main authors of "Advances in the Theory of Shock Waves" (Freistuehler/Szepessy, eds, 4187-4). * Manuscript endorsed by N. Bellomo, MSSET series editor...should be a good sell to members of MSSET community, who by-in-large are based in Europe. * Included are self-contained introductions to different topics such as hyperbolic boundary value problems, parabolic systems, WKB methods, construction of profiles, introduction to the theory of Evans' functions, and energy methods with Kreiss' symmetrizers.
Here is a systematic approach to such fundamental questions as: What mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The author proposes an axiomatization of the physics inspired notion of Einstein-Weyl causality and investigating the consequences in terms of possible topological spaces. One significant result is that the notion of causality can effectively be extended to discontinuum.
This monographdeals with methods of studying multidimensional inverse problems for kinetic and other evolution equations, in particular transfer equations. The methods used are applied to concrete inverse problems, especially multidimensional inverse problems applicable in linear and nonlinear statements. A significant part of the book contains formulas and relations for solving inverse problems, including formulas for the solution and coefficients of kinetic equations, differential-difference equations, nonlinear evolution equations, and second order equations.
The first part is devoted to the topic of quantum gravity and string theories, mainly concerned with recent authoritative results in the study of discretizations in classical and quantum general relativity, non-commutative theories of gravity, (2+1)-dimensional supergravity, and Berezin description of Kaehler quotients. The field to particle transition problem is also considered. The second part deals with cosmology and black holes. Here, cosmological, inflationary, and braneworld scenarios are investigated. Moreover, some scalar field models for the dark matter content of the universe as well as new models of protostellar collapse and fragmentation are presented. This part includes also a study of de Sitter/Anti-de Sitter phase transition for black holes, an understanding of hairy black holes and an improvement of the no-hair theorem proof for the Proca field. The third part is devoted to exact solutions, in particular
classical and quantum cosmological solutions in scalar-tensor
theories. Additionally, a discussion about conformally flat
axisymmetric spacetimes and some considerations on accelerated
expansion in scalar-tensor theories are presented.
The short life and tragic death of Matvei Petrovich Bronstein (1906-1938) may be seen as a symbol of the man's time and his country. One of the most remarkable features of Soviet history was the impressive advance of its physical sciences against the brutal and violent background of totalitarianism. Soviet advances in nuclear and space technology form an important part of world history. These achievements had their roots in the 30s, when Bronstein's generation entered science. Among his friends were the famous physicists Lev Landau and George Gamow. Bronstein worked in the vast field of theoretical physics, ranging from nuclear physics to astrophysics and from relativistic quantum theory to cosmology. His pioneering work on quantizing gravitation goes beyond the history of physics, because today the quantum theory of gravitation occupies a special place in fundamental physics. Bronstein was also a master of scientific explanation thanks to his profound knowledge, enthusiasm as a teacher and a gift for literature. This enabled him to write popular science for children, the widest and most responsive group of readers. He became a writer with the help of his wife Lidiya Chukovskaya, known now as an outstanding writer and fighter for human rights. Bronstein's life was closely intertwined with the social, historical and scientific context of one of the most tragic and intriguing periods of Russian history.
Precision physics of simple atoms is a multidisciplinary area, involving atomic, laser, nuclear and particle physics and also metrology. This book will thus be of interest to a broad community of physicists and metrologists. Furthermore, since hydrogen (and other hydrogen-like atoms) is a model system for applying quantum theory, the book contains valuable material for students. The chapters provide in-depth reviews covering precision measurements, accurate calculations, fundamental constants, frequency standards, and tests of fundamental theory. The latest progress in each of these areas is also described for the specialist. The topics selected for this book are largely complementary to those of the earlier related volume, LNP 570.
This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommendation systems, and network structure.
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.
This volume offers an introduction, in the form of four extensive lectures, to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. The first lecture is by Christine Lescop on knot invariants and configuration spaces, in which a universal finite-type invariant for knots is constructed as a series of integrals over configuration spaces. This is followed by the contribution of Raimar Wulkenhaar on Euclidean quantum field theory from a statistical point of view. The author also discusses possible renormalization techniques on noncommutative spaces. The third lecture is by Anamaria Font and Stefan Theisen on string compactification with unbroken supersymmetry. The authors show that this requirement leads to internal spaces of special holonomy and describe Calabi-Yau manifolds in detail. The last lecture, by Thierry Fack, is devoted to a K-theory proof of the Atiyah-Singer index theorem and discusses some applications of K-theory to noncommutative geometry. These lectures notes, which are aimed in particular at graduate students in physics and mathematics, start with introductory material before presenting more advanced results. Each chapter is self-contained and can be read independently.
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.
The topic of the 2010 Abel Symposium, hosted at the Norwegian Academy of Science and Letters, Oslo, was Nonlinear Partial Differential Equations, the study of which is of fundamental importance in mathematics and in almost all of natural sciences, economics, and engineering. This area of mathematics is currently in the midst of an unprecedented development worldwide. Differential equations are used to model phenomena of increasing complexity, and in areas that have traditionally been outside the realm of mathematics. New analytical tools and numerical methods are dramatically improving our understanding of nonlinear models. Nonlinearity gives rise to novel effects reflected in the appearance of shock waves, turbulence, material defects, etc., and offers challenging mathematical problems. On the other hand, new mathematical developments provide new insight in many applications. These proceedings present a selection of the latest exciting results by world leading researchers.
The concept of time has fascinated humanity throughout recorded history, and it remains one of the biggest mysteries in science and philosophy. Time is clearly one of the fundamental building blocks of the universe and thus a deeper understanding of nature at a fundamental level also demands a comprehension of time. Furthermore, the origins of the universe are closely intertwined with the puzzle of time: Did time emerge at the Big Bang? Why does the arrow of time 'conspire' with the order of the initial state of the universe? This book addressesmany ofthe most important questions about time: What is time, and is it fundamental or emergent? Why is there such an arrow of time, closely related to the initial state of the universe, and why do the cosmic, thermodynamic and other arrows agree? These issues are discussed here by leading experts, and each offers a new perspective on the debate. Their contributions delve into the most difficult research topic in physics, also describing the latest cutting edge research on the subject. The book also offers readers a comparison between the different outlooks of philosophy, physics and cosmology on the puzzle of time. This volume is intended to be useful for research purposes, but most chapters are also accessible to a more general audience of scientifically educated readers looking for deeper insights. "
The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose work involves topics in mathematical physics, stochastic processes and differential equations in general, as well as those physicists whose work centers on statistical mechanics and kinetic theory.
Eleven carefully selected, peer-reviewed contributions from the Virtual Conference on Computational Science (VCCS-2016) are featured in this edited book of proceedings. VCCS-2016, an annual meeting, was held online from 1st to 31st August 2016. The theme of the conference was "Computational Thinking for the Advancement of Society" and it matched the paradigm shift in the way we think. VCCS-2016 was attended by 100 participants from 20 countries. The chapters reflect a wide range of fundamental and applied research applying computational methods.
This book is based on the outcome of the "2012 Interdisciplinary Symposium on Complex Systems" held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexity of rugged landscapes, and more. All selected papers represent innovative ideas, philosophical overviews and state-of-the-art discussions on aspects of complexity. The book will be useful as instructional material for senior undergraduate and entry-level graduate students in computer science, physics, applied mathematics and engineering-type work in the area of complexity. The book will also be valuable as a resource of knowledge for practitioners who want to apply complexity to solve real-life problems in their own challenging applications. The authors and editors hope that readers will be inspired to do their own experiments and simulations, based on information reported in this book, thereby moving beyond the scope of the book.
This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural networks (chapter 4). The features of time-frequency organization of EEG signals are then extensively discussed, from theory to practical applications (chapters 5 and 6). Lastly, the technical details of automatic diagnostics and processing of EEG signals using wavelets are examined (chapter 7). The book will be a useful resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduat e students specializing in the corresponding areas. |
![]() ![]() You may like...
The Thabo Bester Story - The Facebook…
Marecia Damons, Daniel Steyn
Paperback
The Profiler Diaries - From The Case…
Gerard Labuschagne
Paperback
![]()
Advances in Mathematical and Statistical…
Barry C. Arnold, N. Balakrishnan, …
Hardcover
R3,129
Discovery Miles 31 290
|