![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > General
Meshfree methods are a modern alternative to classical mesh-based discretization techniques such as finite differences or finite element methods. Especially in a time-dependent setting or in the treatment of problems with strongly singular solutions their independence of a mesh makes these methods highly attractive. This volume collects selected papers presented at the Sixth International Workshop on Meshfree Methods held in Bonn, Germany in October 2011. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering.
In this thesis, the author develops numerical techniques for tracking and characterising the convoluted nodal lines in three-dimensional space, analysing their geometry on the small scale, as well as their global fractality and topological complexity---including knotting---on the large scale. The work is highly visual, and illustrated with many beautiful diagrams revealing this unanticipated aspect of the physics of waves. Linear superpositions of waves create interference patterns, which means in some places they strengthen one another, while in others they completely cancel each other out. This latter phenomenon occurs on 'vortex lines' in three dimensions. In general wave superpositions modelling e.g. chaotic cavity modes, these vortex lines form dense tangles that have never been visualised on the large scale before, and cannot be analysed mathematically by any known techniques.
A "Wall Street Journal" Best Book of 2013
This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.
The effective planning of residential location choices is one of the great challenges of contemporary societies and requires forecasting capabilities and the consideration of complex interdependencies which can only be handled by complex computer models. This book presents a range of approaches used to model residential locations within the context of developing land-use and transport models. These approaches illustrate the range of choices that modellers have to make in order to represent residential choice behaviour. The models presented in this book represent the state-of-the-art and are valuable both as key building blocks for general urban models, and as representative examples of complexity science.
The speed of light, the fine structure constant, and Newton's constant of gravity - these are just three among the many physical constants that define our picture of the world. Where do they come from? Are they constant in time and across space? In this book, physicist and author Harald Fritzsch invites the reader to explore the mystery of the fundamental constants of physics in the company of Isaac Newton, Albert Einstein, and a modern-day physicist. The conversation that the three scientists are imagined to have provides an entertaining introduction to the constants and covers topics ranging from atomic, nuclear, and particle physics to astrophysics and cosmology.
Bioenergy Options for a Cleaner Environment describes the biomass
resource and its delivery. A panel of international experts
describe the range of conversion technologies both commercially
available and under development, and explore the technical,
environmental and socio-economic barriers and benefits of using
biomass in both developed and developing countries.
This book proves that Feynman's original definition of the path integral actually converges to the fundamental solution of the Schroedinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved.The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schroedinger's quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schroedinger's method, there is still much to be done concerning rigorous mathematical treatment of Feynman's method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by dividing the time interval into small pieces. This method is called the time slicing approximation method or the time slicing method.This book consists of two parts. Part I is the main part. The time slicing method is performed step by step in detail in Part I. The time interval is divided into small pieces. Corresponding to each division a finite-dimensional integral is constructed following Feynman's famous paper. This finite-dimensional integral is not absolutely convergent. Owing to the assumption of the potential, it is an oscillatory integral. The oscillatory integral techniques developed in the theory of partial differential equations are applied to it. It turns out that the finite-dimensional integral gives a finite definite value. The stationary phase method is applied to it. Basic properties of oscillatory integrals and the stationary phase method are explained in the book in detail.Those finite-dimensional integrals form a sequence of approximation of the Feynman path integral when the division goes finer and finer. A careful discussion is required to prove the convergence of the approximate sequence as the length of each of the small subintervals tends to 0. For that purpose the book uses the stationary phase method of oscillatory integrals over a space of large dimension, of which the detailed proof is given in Part II of the book. By virtue of this method, the approximate sequence converges to the limit. This proves that the Feynman path integral converges. It turns out that the convergence occurs in a very strong topology. The fact that the limit is the fundamental solution of the Schroedinger equation is proved also by the stationary phase method. The semi-classical asymptotic formula naturally follows from the above discussion.A prerequisite for readers of this book is standard knowledge of functional analysis. Mathematical techniques required here are explained and proved from scratch in Part II, which occupies a large part of the book, because they are considerably different from techniques usually used in treating the Schroedinger equation.
For most cases of interest, exact solutions to nonlinear equations describing stochastic dynamical systems are not available. This book details the relatively simple and popular linearization techniques available, covering theory as well as application. It examines models with continuous external and parametric excitations, those that cover the majority of known approaches.
This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry - one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement of multiple Higgs boson production in vector-boson scattering when Higgs couplings to gauge bosons differ from those predicted by the Standard Model. The thesis demonstrates that due to the loss of unitarity, the very large enhancement for triple Higgs boson production takes place. This is a truly novel finding. The thesis also studies the effects of supersymmetric partners of top and bottom quarks on the Higgs production and decay at the LHC, pointing for the first time to non-universal alterations for two main production processes of the Higgs boson at the LHC-vector boson fusion and gluon-gluon fusion. Continuing the exploration of Higgs boson and supersymmetry at the LHC, the thesis extends existing experimental analysis and shows that for a single decay channel the mass of the top quark superpartner below 175 GeV can be completely excluded, which in turn excludes electroweak baryogenesis in the Minimal Supersymmetric Model. This is a major new finding for the HEP community. This thesis is very clearly written and the introduction and conclusions are accessible to a wide spectrum of readers.
This book and companion DVD provide a comprehensive set of modeling methods for data and uncertainty analysis, taking readers beyond mainstream methods and focusing on techniques with a broad range of real-world applications. The companion DVD contains tutorials, sample code, and software packages with demonstrations, enabling readers to test and use tools presented in the book. The book will be useful as a textbook for graduate students, or as a training manual in the fields of calibration and testing. The work may also serve as a reference for metrologists, mathematicians, statisticians, software engineers, chemists, and other practitioners with a general interest in measurement science.
The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it 's impact on the macro behaviour are considered.
This book features a selection of articles based on the XXXIV Bialowieza Workshop on Geometric Methods in Physics, 2015. The articles presented are mathematically rigorous, include important physical implications and address the application of geometry in classical and quantum physics. Special attention deserves the session devoted to discussions of Gerard Emch's most important and lasting achievements in mathematical physics. The Bialowieza workshops are among the most important meetings in the field and gather participants from mathematics and physics alike. Despite their long tradition, the Workshops remain at the cutting edge of ongoing research. For the past several years, the Bialowieza Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented. The unique atmosphere of the Workshop and School is enhanced by the venue, framed by the natural beauty of the Bialowieza forest in eastern Poland.
The discovery, in the middle of the 17th century, of both the weight of air and the law governing its elasticity transformed the status of the atmosphere from that of a purely mathematical object to that of a complex and highly variable physical system. In the context of rapidly intensifying experimentation and observation, the nature of the atmosphere was therefore the subject of a host of hypotheses, which 18th century scholars tried to reconcile with a coherent physical approach. In particular, this was achieved by the conceptualization of invisible or "subtle" materials, thought to be closely linked to atmospheric stratification. Subtle matter was introduced, largely to reconcile contradictory results concerning the estimation of the height of the atmosphere. These estimations were based on different methods, mainly using the observation of meteors and the refracted and reflected light of stars. Taking as its common thread the question of the height of the atmosphere, which was omnipresent in the texts at the time, this book traces the history of the discovery of the atmosphere and the many questions it generated.
This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.
Learn how to quickly solve electromagnetic scattering problems using the Moment Method with this unique book. Software Included! Accompanying software featuring FORTRAN source code allows you to modify the book's examples and understand how simple and complex shapes scatter waves. One 3.5" IBM PC-compatible diskette.
This book describes the development of a system dynamics-based model that can capture the future trajectories of housing energy and carbon emissions. It approaches energy and carbon emissions in the housing sector as a complex socio-technical problem involving the analysis of intrinsic interrelationships among dwellings, occupants and the environment. Based on an examination of the UK housing sector but with relevance worldwide, the book demonstrates how the systems dynamics simulation can be used as a learning laboratory regarding future trends in housing energy and carbon emissions. The authors employ a pragmatic research strategy, involving the collection of both qualitative and quantitative data to develop a model. The book enriches readers' understanding of the complexity involved in housing energy and carbon emissions from a systems-thinking perspective. As such, it will be of interest to researchers in the fields of architectural engineering, housing studies and climate change, while also appealing to industry practitioners and policymakers specializing in housing energy.
This compendium of 29 chapters from 18 countries contains both fundamental and advanced insight into the inevitable shift from cities dominated by the fossil-fuel systems of the industrial age to a renewable-energy based urban development framework. The cross-disciplinary handbook covers a range of diverse yet relevant topics, including: carbon emissions policy and practice; the role of embodied energy; urban thermal performance planning; building efficiency services; energy poverty alleviation efforts; renewable community support networks; aspects of household level bio-fuel markets; urban renewable energy legislation, programs and incentives; innovations in individual transport systems; global urban mobility trends; implications of intelligent energy networks and distributed energy supply and storage; and the case for new regional monetary systems and lifestyles. Presented are practical and principled aspects of technology, economics, design, culture and society, presenting perspectives that are both local and international in scope and relevance.
This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data? The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models. The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail. The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author's recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks. The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing.
The Compendium of Theoretical Physics contains the canonical curriculum of theoretical physics. From classical mechanics over electrodynamics, quantum mechanics and statistical physics/thermodynamics, all topics are treated axiomatic-deductively and confimed by exercises, solutions and short summaries.
This thesis investigates the sound generated by solid bodies in steady subsonic flows with unsteady perturbations, as is typically used when determining the noise generated by turbulent interactions. The focus is predominantly on modelling the sound generated by blades within an aircraft engine, and the solutions are presented as asymptotic approximations. Key analytical techniques, such as the Wiener-Hopf method, and the matched asymptotic expansion method are clearly detailed. The results allow for the effect of variations in the steady flow or blade shape on the noise generated to be analysed much faster than when solving the problem numerically or considering it experimentally. |
You may like...
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R5,660
Discovery Miles 56 600
|