![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > General
This thesis sheds important new light on the puzzling properties of Strontium Ruthenate. Using a sophisticated weak-coupling approach, exact within certain limits, it shows that proper treatment of spin-orbit and multi-band effects is crucial to the physics. Based on the results of these calculations, it resolves a crucial, long-standing puzzle in the field: It demonstrates why the experimentally observed time-reversal breaking is not incompatible with the observed lack of measurable edge currents. Lastly, the thesis makes predictions for the properties of the material under uniaxial strain, which are in good agreement with recent experiments -resolving the mystery of the so-called 3K phase, and suggesting the intriguing possibility that under strain the superconductor may become conventional.
This book is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.
This book presents the latest algorithmic developments in the cell-mapping method for the global analysis of nonlinear dynamic systems, global solutions for multi-objective optimization problems, and global solutions for zeros of complex algebraic equations. It also discusses related engineering and scientific applications, including the nonlinear design of structures for better vibration resistance and reliability; multi-objective, structural-acoustic design for sound abatement; optimal multi-objective design of airfoils for better lift; and optimal multi-objective design of linear and nonlinear controls with or without time delay. The first book on the subject to include extensive Matlab and C++ codes, it presents various implementation algorithms of the cell-mapping method, enabling readers to understand how the method works and its programming aspects. A link to the codes on the Springer website will be provided to the readers.
This book explores the rise of theoretical physics in 19th century Germany. The authors show how the junior second physicist in German universities over time became the theoretical physicist, of equal standing to the experimental physicist. Gustav Kirchhoff, Hermann von Helmholtz, and Max Planck are among the great German theoretical physicists whose work and career are examined in this book. Physics was then the only natural science in which theoretical work developed into a major teaching and research specialty in its own right. Readers will discover how German physicists arrived at a well-defined field of theoretical physics with well understood and generally accepted goals and needs. The authors explain the nature of the work of theoretical physics with many examples, taking care always to locate the research within the workplace. The book is a revised and shortened version of Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, a two-volume work by the same authors. This new edition represents a reformulation of the larger work. It retains what is most important in the original work, while including new material, sharpening discussions, and making the research more accessible to readers. It presents a thorough examination of a seminal era in physics.
This book presents a cross-disciplinary approach to smart grids, offering an invaluable basis for understanding their complexity and potential, and for discussing their technical, legal, economic, societal, psychological and security aspects. Smart grids are a complex phenomenon involving new, active roles for consumers and prosumers, novel social, political and cultural practices, advanced ICT, new markets, security of supply issues, the informational turn in energy, valuation of assets and investments, technological innovation and (de)regulation. Furthermore, smart grids offer new interfaces, in turn creating hybrid fields: with the increasing use of electric vehicles and electric transportation, smart grids represent the crossroads of energy and mobility. While the aim is to achieve more sustainable production, transportation and use of energy, the importance of smart grids actually has less to do with electricity, heat or gas, and far more with transforming the infrastructure needed to deliver energy, as well as the roles of its owners, operators and users. The immediate goal is to contribute positively to a sustainable world society. The chapters are revised and expanded texts based upon lectures delivered at the Groningen Energy Summer School 2014. Questions for further discussion at the end of each chapter highlight the key themes that emerge. The book offers an indispensable resource for researchers, professionals and companies in the power supply industry, and for students seeking to broaden and deepen their understanding of smart grids.
The behaviour of matter at low temperatures is of profound significance for the understanding of a diverse range of fundamental physics, including important aspects of thermodynamics, quantum mechanics, elementary particle physics and astrophysics. There is also a growing technology based on low temperatures, which is assuming a rapidly increasing importance. This book meets the need for a clear and unified introduction to physics at low temperatures and to some of these important applications.
This book is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
This edited volume offers a clear in-depth overview of research covering a variety of issues in social search and recommendation systems. Within the broader context of social network analysis it focuses on important and up-coming topics such as real-time event data collection, frequent-sharing pattern mining, improvement of computer-mediated communication, social tagging information, search system personalization, new detection mechanisms for the identification of online user groups, and many more. The twelve contributed chapters are extended versions of conference papers as well as completely new invited chapters in the field of social search and recommendation systems. This first-of-its kind survey of current methods will be of interest to researchers from both academia and industry working in the field of social networks.
Newton's classical physics and its underlying ontology are loaded with several metaphysical hypotheses that cannot be justified by rational reasoning nor by experimental evidence. Furthermore, it is well known that some of these hypotheses are not contained in the great theories of Modern Physics, such as the theory of Special Relativity and Quantum Mechanics. This book shows that, on the basis of Newton's classical physics and by rational reconstruction, the theory of Special Relativity as well as Quantum Mechanics can be obtained by partly eliminating or attenuating the metaphysical hypotheses. Moreover, it is shown that these reconstructions do not require additional hypotheses or new experimental results. In the second edition the rational reconstructions are completed with respect to General Relativity and Cosmology. In addition, the statistics of quantum objects is elaborated in more detail with respect to the rational reconstruction of quantum mechanics. The new material completes the approach of the book as much as it is possible at the present state of knowledge. Presumably, the most important contribution that is added to the second edition refers to the problem of interpretation of the three great theories of Modern Physics. It is shown in detail that in the light of rational reconstructions even realistic interpretations of the three theories of Modern Physics are possible and can easily be achieved.
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the application of this methodology has yielded the observed anomalous acceleration. This marks a major achievement, given that this problem remained unsolved for more than a decade. For the second anomaly, the flyby anomaly, a tiny glitch in the velocity of spacecraft that perform gravity assisting maneuvers on Earth, no definitive answer is put forward; however a quite promising strategy for examining the problem is provided and a new mission is proposed. The proposal largely consists in using the Galileo Navigational Satellite System to track approaching spacecraft, and in considering a small test body that approaches Earth from a highly elliptic trajectory.
This book describes an effective framework for setting the right process parameters and new mold design to reduce the current plastic defects in injection molding. It presents a new approach for the optimization of injection molding process via (i) a new mold runner design which leads to 20 percent reduction in scrap rate, 2.5 percent reduction in manufacturing time, and easier ejection of injected part, (ii) a new mold gate design which leads to less plastic defects; and (iii) the introduction of a number of promising alternatives with high moldability indices. Besides presenting important developments of relevance academic research, the book also includes useful information for people working in the injection molding industry, especially in the green manufacturing field.
This is the story of the author's unique scientific journey with one of the most remarkable men of 20th century science. The journey begins in Sri Lanka, the author's native country, with his childhood acquaintance with Fred Hoyle's writings. The action then moves to Cambridge, where the famous Hoyle-Wickramasinghe collaborations begin. A research programme which was started in 1962 on the carbonaceous nature of interstellar dust leads, over the next two decades, to developments that are continued in both Cambridge and Cardiff. These developments prompt Hoyle and the author to postulate the organic theory of cosmic dust (which is now generally accepted), and then to challenge one of the most cherished paradigms of contemporary science - the theory that life originated on Earth in a warm primordial soup. This new edition examines the many scientific developments that have transpired since the first edition was published. The discovery of bacteria in the upper reaches of the atmosphere, biological signatures in meteorites, spectroscopy of high-z galaxies and more all mesh with many of the ideas that had their origin in the first edition. Pushing into the future, the updated text examines the many experiments and probes currently operating or planned that will shed more light on the theory of planetary panspermia. A Journey with Fred Hoyle is an intriguing book that delineates the progress of a collaboration spanning 40 years, through a sequence of personal reflections, anecdotes and reminiscences.
The proceedings from the eighth KMO conference represent the findings of this international meeting which brought together researchers and developers from industry and the academic world to report on the latest scientific and technical advances on knowledge management in organizations. This conference provided an international forum for authors to present and discuss research focused on the role of knowledge management for innovative services in industries, to shed light on recent advances in social and big data computing for KM as well as to identify future directions for researching the role of knowledge management in service innovation and how cloud computing can be used to address many of the issues currently facing KM in academia and industrial sectors.
This book covers essential Microsoft EXCEL (R)'s computational skills while analyzing introductory physics projects. Topics of numerical analysis include; multiple graphs on the same sheet, calculation of descriptive statistical parameters, a 3-point interpolation, the Euler and the Runge-Kutter methods to solve equations of motion, the Fourier transform to calculate the normal modes of a double pendulum, matrix calculations to solve coupled linear equations of a DC circuit, animation of waves and Lissajous figures, electric and magnetic field calculations from the Poisson equation and its 3D surface graphs, variational calculus such as Fermat's least traveling time principle and the least action principle. Nelson's stochastic quantum dynamics is also introduced to draw quantum particle trajectories.
As in the previous volume on the topic, the authors close the gap between abstract mathematical approaches, such as applied methods of modern algebra and analysis, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems, on the one hand and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in biochemistry, geophysics, biology and climatology. This compilation will be of interest to mathematicians and engineers working at the interface of these fields. It presents selected works of the joint seminar series of Lomonosov Moscow State University and the Institute for Applied System Analysis at National Technical University of Ukraine "Kyiv Polytechnic Institute". The authors come from Brazil, Germany, France, Mexico, Spain, Poland, Russia, Ukraine and the USA.
This second edition of the successful textbook, Modern Physics: An Introductory Text, preserves the unique blend of readability, scientific rigour and authenticity that made its predecessor so indispensible a text for non-physics science majors. As in the first edition, it sets out to present 20th century physics in a form accessible and useful to students of the life sciences, medicine, agricultural, earth and environmental sciences. It is also valuable as a first reader and source text for students majoring in the physical sciences and engineering. Two new chapters have been added, one on Einstein's elucidation of Brownian Motion and the second on Quantum Electrodynamics.Taking the discovery of the electron, the formulation of Maxwellian electromagnetism and Einstein's elucidation of Brownian motion as its starting point, the text proceeds to a comprehensive presentation of the three seminal ideas of 20th century physics: Special and General Relativity, Quantum Theory and the Nuclear Atom. From here the text moves on to the new discoveries prompted by these ideas, their impact on our understanding of natural phenomena and their application to the development and invention of the devices and technologies that define the 21st century.Questions, exercises and problems for student assignments are found at the end of each of the six parts into which the text is divided; answers to the numerical questions are at the end of the book. The techniques by which trigonometric functions, phasors (rotating vectors) and complex numbers are employed in the mathematical description of wave motion are summarised in a supplementary section. In consideration of the audience for whom the book is intended, all mathematics other than that required for descriptive or illustrative purposes has been omitted from the main body of the text and incorporated into the 47 worked examples and 11 appendices.
The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations."
The last decades have seen the emergence of Complex Networks as the language with which a wide range of complex phenomena in fields as diverse as Physics, Computer Science, and Medicine (to name just a few) can be properly described and understood. This book provides a view of the state of the art in this dynamic field and covers topics ranging from network controllability, social structure, online behavior, recommendation systems, and network structure. This book includes the peer-reviewed list of works presented at the 7th Workshop on Complex Networks CompleNet 2016 which was hosted by the Universite de Bourgogne, France, from March 23-25, 2016. The 28 carefully reviewed and selected contributions in this book address many topics related to complex networks and have been organized in seven major groups: (1) Theory of Complex Networks, (2) Multilayer networks, (3) Controllability of networks, (4) Algorithms for networks, (5) Community detection, (6) Dynamics and spreading phenomena on networks, (7) Applications of Networks.
This volume contains the proceedings of the workshop Crossing the Walls in Enumerative Geometry, held in May 2018 at Snowbird, Utah. It features a collection of both expository and research articles about mirror symmetry, quantized singularity theory (FJRW theory), and the gauged linear sigma model. Most of the expository works are based on introductory lecture series given at the workshop and provide an approachable introduction for graduate students to some fundamental topics in mirror symmetry and singularity theory, including quasimaps, localization, the gauged linear sigma model (GLSM), virtual classes, cosection localization, $p$-fields, and Saito's primitive forms. These articles help readers bridge the gap from the standard graduate curriculum in algebraic geometry to exciting cutting-edge research in the field. The volume also contains several research articles by leading researchers, showcasing new developments in the field. |
You may like...
Who Paid The Piper? - The CIA And The…
Frances Stonor Saunders
Paperback
(2)
Neoclassical Realist Theory of…
Norrin M. Ripsman, Jeffrey W. Taliaferro, …
Hardcover
R3,561
Discovery Miles 35 610
The Democratic Party - Documents Decoded
Douglas B. Harris, Lonce H. Bailey
Hardcover
R2,703
Discovery Miles 27 030
|