![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > General
The Material Basis of Energy Transitions explores the intersection between critical raw material provision and the energy system. Chapters draw on examples and case studies involving energy technologies (e.g., electric power, transport) and raw material provision (e.g., mining, recycling), and consider these in their regional and global contexts. The book critically discusses issues such as the notion of criticality in the context of a circular economy, approaches for estimating the need for raw materials, certification schemes for raw materials, the role of consumers, and the impact of renewable energy development on resource conflicts. Each chapter deals with a specific issue that characterizes the interdependency between critical raw materials and renewable energies by examining case studies from a particular conceptual perspective. The book is a resource for students and researchers from the social sciences, natural sciences, and engineering, as well as interdisciplinary scholars interested in the field of renewable energies, the circular economy, recycling, transport, and mining. The book is also of interest to policymakers in the fields of renewable energy, recycling, and mining, professionals from the energy and resource industries, as well as energy experts and consultants looking for an interdisciplinary assessment of critical materials.
Pollution and ways to combat it have become topics of great concern for researchers. One of the most important dimensions of this global crisis is wastewater, which can often become contaminated with heavy metals such as lead, mercury, and arsenic, which are released from different industrial wastes, mines, and agricultural runoff. Bioremediation of such heavy metals has been extensively studied using different groups of bacteria, fungi, and algae, and has been considered as a safer, eco-friendly, and cost-effective option for mitigation of contaminated wasteland. The toxicity of water impacts all of society, and so it is of great importance that we understand the better, cleaner, and more efficient ways of treating water. Recent Advancements in Bioremediation of Metal Contaminants is a pivotal reference source that explores bioremediation of pollutants from industrial wastes and examines the role of diverse forms of microbes in bioremediation of wastewater. Covering a broad range of topics including microorganism tolerance, phytoremediation, and fungi, the role of different extremophiles and biofilms in bioremediation are also discussed. This book is ideally designed for environmentalists, engineers, policymakers, academicians, researchers, and students in the fields of microbiology, toxicology, environmental chemistry, and soil and water science.
In recent years, the algal biorefinery is seen as a promising alternative to fossil derived products that reduce the environmental pollution, product costs and support circular bioeconomy. However, the upstream algal cultivation and downstream processing are the energy intensive processes and are considered as bottlenecks in promoting algal biorefinery. Improving the biomass productivity and bioproduct developments are still underway, while a number of novel bioprocess and bio-reactor engineering technologies were developed recently. Therefore, this book provides extensive knowledge of microalgae refineries. This book is divided into two volumes (Vol. I & Vol. II), which presents complete coverage of microalgae refineries. Therefore, Vol. I offers complete coverage of the algal bioproducts process, including biotechnological applications and environmental effects of microalgae cultivation. While Vol. II, provides various industrial applications and future prospects of algal biorefinery for sustainable development of circular bioeconomy. With contributions from world experts, focuses on microalgae from an organism perspective to deliver a complete picture from evolution to bioproducts. The edited book provides a concise introduction to the science, biology, technology, and application of algae. It covers downstream and upstream steps of the algal refinery for the production of algal biomass, which has several social benefits.
From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment: Recent Developments, New Trends, Advances, and Opportunities provides an overview on the biological tools used for the treatment of the gaseous fluxes, with emphasis on traditional and perspective options, opening new horizons for research and implementation in practice. It is known that air pollution is an emergent global issue and a priority within the international environmental programs. Moreover, technologies based on biological methods are significantly contributing to the sustainable development concept. Thus this book provides tools for solving air pollution issues in a sustainable manner. These issues can be solved at different levels (e.g., "end-of-pipe" gaseous streams, indoor/outdoor air, closed environments), which can be approached by the different biotechniques presented in the book, from classical biofiltration techniques (part 1) to phytotreatment and microalgae-based techniques (part 2). Although all options have their particularities that make them special for certain applications, a special attention is drawn to the potential of the last one, which offers multiple possibilities for biomass valorization. Scientists from worldwide with relevant experience in their field have been contributed to the development of this book.
Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface.
Resulting from a merger of two successful events, this book contains papers presented at the 11th International Conference on Waste Management and Environmental and Economic Impact on Sustainable Development. To prevent emerging threats to environmental and ecological systems we must learn from past failures to avoid repeating similar mistakes. Waste management is one of the key problems of modern society due to the ever-expanding volume and complexity of discarded domestic and industrial waste and its implications on health and the environment. Society is increasingly aware of the need to establish better practices and safer solutions for waste disposal. This creates a need for more research on current disposal methods such as landfills, incineration, chemical and effluent treatment, as well as recycling, clean technologies, waste monitoring, public and corporate awareness and general education. The desired direction of waste management is towards sustainable strategies that avoid the short term solutions applied in the past. The approach which has emerged as the most promising has been called 4Rs, where reduction, reuse, recycling and recovery are seen as the best actions. More recently these concepts have given rise to the new model of the 'Circular Economy', which is based on the reuse of what up to now has been considered waste, reintroducing them into the production cycle. Further steps are required towards the improvement of current technologies, increased collaboration between the public, government and private sectors and increased involvement of all stakeholders. The included research works put a focus on the impact of economic constraints on the environment, taking into account the social aspects as well as the over-use of natural resources, contamination and toxicity. Problems of great importance are addressed, with the goal of finding constructive and progressive approaches to ensure sustainability.
Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use in Energy Modeling quantifies key trends and drivers of energy technologies deployed in the energy transition. It uses the experience curve tool to show how future cost reductions and cumulative deployment of these technologies may shape the future mix of the electricity, heat and transport sectors. The book explores experience curves in detail, including possible pitfalls, and demonstrates how to quantify the 'quality' of experience curves. It discusses how this tool is implemented in models and addresses methodological challenges and solutions. For each technology, current market trends, past cost reductions and underlying drivers, available experience curves, and future prospects are considered. Electricity, heat and transport sector models are explored in-depth to show how the future deployment of these technologies-and their associated costs-determine whether ambitious decarbonization climate targets can be reached - and at what costs. The book also addresses lessons and recommendations for policymakers, industry and academics, including key technologies requiring further policy support, and what scientific knowledge gaps remain for future research.
Beyond Decommissioning: The Reuse and Redevelopment of Nuclear Installations presents the most up-to-date research and guidance on the reuse and redevelopment of nuclear plants and sites. Consultant Michele Laraia extensively builds upon experience from the redevelopment of non-nuclear industrial sites, a technical field that has considerably predated nuclear applications, to help the reader gain a very thorough and practical understanding of the redevelopment opportunities for decommissioned nuclear sites. Laraia emphasizes the socioeconomic and financial benefits from very early planning for site reuse, including how to manage the decommissioning transition, anticipate financial issues, and effectively utilize available resources. With an increasing number of decommissioning projects being conducted worldwide, it is critical that knowledge gained by experts with hands-on experience is passed on to the younger generation of nuclear professionals. Besides, this book describes the experiences of non-nuclear organizations that have reutilized the human, financial, and physical site assets, with adaptations, for a new productive mission, making it a key reference for all parties associated with nuclear operation and decommissioning. Those responsible for nuclear operation and decommissioning are encouraged to incorporate site reuse within an integrated, beginning-to-end view of their projects. The book also appeals to nuclear regulators as it highlights more opportunities to complete nuclear decommissioning safely, speedily, and in the best interests of all concerned parties.
The Role of Ecosystem Services in Sustainable Food Systems reveals, in simple terms, the operational definition, concepts and applications of ecosystem services with a focus on sustainable food systems. The book presents case studies on both geographical and production system-wide considerations. Initial chapters discuss concepts, methodologies and the tools needed to understand ecosystem services in the broader food system. Middle and later chapters present different perspectives from case studies of ecosystem services derived from some of the key sustainable food production systems used by farmers, along with discussions on the challenges of deriving full benefits and how they can be overcome. Researchers, students, scientists, development practitioners and policymakers will welcome this reference as they continue their work related to sustainable food systems.
An Operations Guide to Safety and Environmental Management Systems (SEMS): Making Sense of BSEE SEMS Regulations gives engineers and managers a vital tool to understand, prepare and manage SEMS audits before, during and after they are done. At the core of the book are 17 elements stemming from regulations which are broken down in parts to help management learn the compliance measures. Elements are supported by practical case studies that analyze past failures and lessons learned. A helpful glossary, abbreviations list and additional section of references give offshore engineers and operators clear-and-concise direction on how to perform key actions in SEMS audits.
Green Sustainable Processes for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent provides an in-depth review on the area of green processes for the industry, focusing on the separation, purification and extraction of medicinal, biological and bioactive compounds utilizing supercritical carbon dioxide as a green solvent and their applications in pharmaceuticals, polymers, leather, paper, water filtration, textiles and more. Chapters explore polymerization, polymer composite production, polymer blending, particle production, microcellular foaming, polymer processing using supercritical carbon dioxide, and a method for the production of micro- and nano-scale particles using supercritical carbon dioxide that focuses on the pharmaceutical industry. A brief introduction and limitations to the practical use of supercritical carbon dioxide as a reaction medium are also discussed, as are the applications of supercritical carbon dioxide in the semiconductor processing industry for wafer processing and its advantages and obstacles.
Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments, Third Edition, presents the latest on microclimates, environmental issues and the conservation of cultural heritage. It is a useful treatise on microphysics, acting as a practical handbook for conservators and specialists in physics, chemistry, architecture, engineering, geology and biology who focus on environmental issues and the conservation of works of art. It fills a gap between the application of atmospheric sciences, like the thermodynamic processes of clouds and dynamics of planetary boundary layer, and their application to a monument surface or a room within a museum. Sections covers applied theory, environmental issues and conservation, practical utilization, along with suggestions, examples, common issues and errors. |
You may like...
Design for Manufacturability with…
Bei Yu, David Z. Pan
Hardcover
Data Driven Smart Manufacturing…
Wei Dong Li, Yuchen Liang, …
Hardcover
R4,701
Discovery Miles 47 010
Research in Shape Modeling - Los…
Kathryn Leonard, Sibel Tari
Hardcover
Models, Algorithms, and Technologies for…
Valery A. Kalyagin, Alexey I. Nikolaev, …
Hardcover
R2,680
Discovery Miles 26 800
Multi-Agent-Based Simulations Applied to…
Diana Francisca Adamatti
Hardcover
R5,213
Discovery Miles 52 130
Extending the Horizons: Advances in…
Edward K. Baker, Anito Joseph, …
Hardcover
R2,685
Discovery Miles 26 850
|